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Abstract—Depression is the major cause of years lived in
disability world-wide; however, its diagnosis and tracking
methods still rely mainly on assessing self-reported depressive
symptoms, methods that originated more than fifty years ago.
These methods, which usually involve filling out surveys or
engaging in face-to-face interviews, provide limited accuracy
and reliability and are costly to track and scale. In this
paper, we develop and test the efficacy of machine learning
techniques applied to objective data captured passively and
continuously from E4 wearable wristbands and from sensors
in an Android phone for predicting the Hamilton Depression
Rating Scale (HDRS). Input data include electrodermal activity
(EDA), sleep behavior, motion, phone-based communication,
location changes, and phone usage patterns. We introduce our
feature generation and transformation process, imputing miss-
ing clinical scores from self-reported measures, and predicting
depression severity from continuous sensor measurements.
While HDRS ranges between 0 and 52, we were able to impute
it with 2.8 RMSE and predict it with 4.5 RMSE which are
low relative errors. Analyzing the features and their relation
to depressive symptoms, we found that poor mental health
was accompanied by more irregular sleep, less motion, fewer
incoming messages, less variability in location patterns, and
higher asymmetry of EDA between the right and the left wrists.

1. Introduction

Depression is the leading cause of ill health and disabil-
ity worldwide: According to the latest estimates from WHO,
more than 300 million people are now living with depres-
sion, an increase of more than 18% between 2005 and 2015
[1]. Historically, diagnosing and tracking depressive symp-
toms has been accomplished through periodic assessment
with structured or unstructured clinical interviews using
standardized symptom rating scales. This approach, which
was invented in the 1960s, is based largely on subjective
self-report, and has limited utility in fully characterizing
clinically meaningful subtypes of depression. Also, this cur-

rent “descriptive” way of diagnosing depression is limited
in its ability to predict the course of illness or to capture
variations of the disease over days.

An important paradigm shift is happening today: Psy-
chiatry and the clinical neurosciences are moving from
relatively narrow neurochemical models of disease, based
on inferences about the pharmacological mechanisms of
available psychotropic medications, to broader anatomical
and neurophysiological understanding of emotion, behavior,
cognition and their disorders [2]. This shift is important,
not only because it provides a new understanding of the
neuroscientific basis of psychiatric disorders, but also be-
cause it leads to the development of novel strategies for
diagnosis and assessment. Researchers are increasingly de-
veloping objective mobile data-driven biomarkers for many
healthcare conditions, including depression (e.g. [3]). We
anticipate that the development of reliable biomarkers will
help improve the diagnosis and assessment of depression,
prediction of treatment response, and early detection of
response, remission and relapse. To date, there is no set
of reliable biomarkers to assess depression.

In this paper, we advance the state of the art in the
development of biomarkers by providing a new way, based
on passive sensing, to estimate depressive symptoms as mea-
sured by the Hamilton Depression Rating Scale (HDRS).
The method utilizes data from E4 wearable sensors [4] and
embedded sensors within an Android phone. Experience
sampling, continuously capturing self-reported depressive
symptoms, can be overwhelming for a patient in the long-
run. Being able to estimate HDRS scores accurately using
passive data could potentially improve the scalability of
depression prognostication as well as its objectivity. In the
meantime, it enables a fertile ground of research for provid-
ing timely interventions to individuals who show signs of
relapse. Also, we believe that there is more value in a regres-
sion analysis as opposed to a classification between different
severity levels of depressive symptoms. With regression, we
may obtain a more accurate and precise understanding of
the progression of the disease.

In our dataset, HDRS has been captured bi-weekly by a
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clinician, as part of their standard practice. Thus, we utilize
a two-step prediction process: First, we use a surrogate (self-
reported data) to predict HDRS and in doing so, impute the
missing HDRS values (from the dates when the HDRS was
not assessed by a clinician) to construct an increased dataset
“HDRS-I”. Second, we use the passive phone and wearable
sensor measures for predicting the HDRS-I values.

2. Background and Related Work

Over the past decade, affective computing researchers
have utilized wearable sensors and phone usage patterns
to detect stress, happiness, and mental wellbeing (e.g. [5],
[6]). We hypothesize that similar underlying phenomena
quantifying mood can help assess mood disorders as well.

Numerous researchers have demonstrated the use of
mobile-based Experience Sampling Methods to monitor
people’s depression, e.g. [7], [8]. In these studies, the de-
pressed patients are asked to fill out regular surveys about
mood, behavior, sleep etc. on their mobile phones. The
self-reports have several limitations. They can be unreliable
as the response rate may depend on the current mood of
the patients. Moreover, they are subjective since such logs
are recorded by the patients themselves and the answers
may vary with factors including mood, weather, social-
demands, or patient’s memory. Finally, frequently answering
the mobile surveys is cumbersome, which may introduce
bias or result in reduced adherence.

Several studies have proposed to measure passively ob-
jective parameters in controlled environments (hospital or
laboratory). One of the first efforts to assess how long-
term physiology and behavior of individuals are correlated
with changes in depression was the LiveNet project [9]. The
LiveNet platform, which monitored skin conductance, heart
rate, activity and voice, was evaluated on six psychiatric in-
patients. More recently, Valenza et al. [10] demonstrated the
use of electrocardiogram and respiration signals collected
in a hospital to assess depression. Although these studies
show promising results, we aim at a harder problem: to
continuously and unobtrusively monitor people during daily
life in order to identify possible biomarkers of depression.

The MONARCA project [11], which developed tools
for assessment and prediction of mood episodes in bipolar
disorder, focused on analytics tools and validating them
with a group of 20 patients. Also, scholars have studied
phone usage correlates of mental health and depressive
symptoms (e.g [12], [13]). Other researchers have looked at
audio/visual cues including facial expressions, head move-
ment, vocalization, and vowel production to predict depres-
sion severity (e.g. [14], [15], [16]). However, many of these
studies have been validated based on self-reported standard
depression scales, like Patient Health Questionnaire (PHQ-
9) [17], rather than on clinical measurements. In this paper,
we aim to fill the gap by including clinical assessment
of depressive symptoms using Hamilton Depression Rating
Scale (HDRS) as scored by the expert clinician in a patient
interview. The clinical form of HDRS data is collected in a
face-to-face meeting bi-weekly as it has been demonstrated

that intensive assessment of depression may have a posi-
tive impact on the assessment score [18]. We then impute
the depression level of the remaining dates using Machine
Learning that incorporates daily patient self-reports.

Most previous work has addressed a classification prob-
lem, usually binary, within this area [19], [20]. Some cap-
tured only categorical label variables, while others trans-
formed an inherent regression problem into a classification
problem, and in doing so relaxed the problem; for example,
they only included the highest and lowest values of the
depression range and did not address the ”middle”. However,
depressive symptoms change continuously and which way
they are shifting is important. To better understand and
prevent worsening of depression, it is not enough to dis-
tinguish between extremely severe and extremely mild de-
pressive symptoms: We aim to measure progressive change
of symptoms in order to enable just-in-time interventions
before depression becomes severe.

3. Study Protocol

Patients diagnosed with MDD from Massachusetts
(n=12) completed an 8-week protocol. Participants included
9 females and 3 males from white, hispanic, african-
american, and asian races and aged between 20 and 73
years old (mean=37, std=17). The protocol involved tracking
depressive symptoms and mobile phone usage. Movisens
[21] was used to measure incoming and outgoing text mes-
sages and phone calls, location, app usage, and screen on/off
behavior. Patients also wore Empatica E4 wristbands [4] that
recorded accelerometer data and electrodermal activity 23
hours a day. Measurements were processed to obtain daily
aggregate measures. Participants were clinically assessed for
depression symptoms biweekly using the HDRS. Tab. 1
summarizes the number of observations for each modality.
In the next section, we explain the detailed measurements
in each modality and the feature generation.

TABLE 1: Dataset summary after computing daily features.

Modality # of Datapoints
Physiological signals 540
Phone passive usage data 605
Interactive surveys 503
Clinical measures 59

4. Feature Architecture

4.1. Physiological Signals

E4 sensors worn on each wrist captured continuous
electrodermal activity (EDA) via the measurement of skin
conductance (4Hz sampling rate), temperature (4Hz sam-
pling rate), and 3-axis accelerometer data (32 Hz sampling
rate). In order to better understand the user’s behavior within
the day, we introduce 6-hour intervals, labeled as morning,
afternoon, evening, and night. The 6-hour interval provides
a balance between granularity and ratio of missing values.



We also calculate aggregate daily measures. Any feature
explained below has been calculated for all these intervals.

We first filtered out the EDA signal when the corre-
sponding skin temperature was below 31°C to exclude the
measurements when the sensor was not worn. Then we
applied the 6th order Butterworth low-pass filter (1Hz cutoff
frequency). We calculated mean EDA and the fraction of
time the sensor was recording the signal. We also computed
the number of skin conductance response (SCR) peaks and
their average amplitude using the method from Gamboa
[22]. There are indications that skin conductance level may
distinguish between depressed and healthy individuals [23].
Also, previous research has shown that asymmetry in EDA
between the wrists can provide extra affective information
[24]. Thus, we also encoded asymmetry in different ways:
the difference between average EDA value, difference be-
tween number of SCRs, and difference between SCL and
SCR signals using Convex Optimization Approach [25].

We applied the the 5th order Butterworth low-pass filter
(10Hz cutoff frequency) to the accelerometer data. We then
translated the output into motion features by calculating the
vector magnitude, VM of the z-axis acceleration data using
the following formula:

VM =

N∑
t=0

VMt + |R(z,t) −Mz| (1)

where R(z,t) is the raw accelerometer z-axis sample, Mz is
the running mean in a 5-second window of the z-axis signal,
and N is the number of raw data samples received in one
second.

Next, we calculated average, median, and standard de-
viation of motion for the mentioned time intervals as well
as the fraction of time in motion. We also kept meta-data
such as the fraction of time within the time interval that the
data were not missing.

We calculated objective sleep based on accelerometer
data for 30 second epochs using the ESS method described
in [26]. We calculated sleep duration, sleep onset time (time
elapsed since noon), maximum duration of uninterrupted
sleep, number of wake-ups during the night, and the time of
waking up (time elapsed since midnight). We also computed
a sleep regularity index (SRI):

SRI =
1 +

1

T − τ
∫ Tτ
0

s(t)s(t+ τ)dt

2
(2)

where data were collected for y = [0, T ], τ = 24, s(t) = 1
during sleep and s(t) = −1 during wake. The SRI ranges
between 0 (highly irregular sleep) and 1 (consistent sleep
every night). We also included meta-data such as the frac-
tion of time that data were being recorded over nighttime
(between 8pm-9am) as well as over the period of 24 hours.

4.2. Phone Passive Usage Data

We utilized Movisens [21] on Android to collect mea-
sures of how the participant is using his or her mobile phone

and how s/he is interacting with other people using the
mobile phone. More specifically, we captured meta-data of
calls, text messages, app usage, display on/off behavior, and
location. Passive data were captured 24/7. The content of the
calls/texts, actual phone numbers, websites visited, and the
content of the applications were not collected.

Following the steps of previous researchers in generating
features from passive phone data [5], we introduce 3-hour
intervals in order to better understand the user’s daytime
behavior. For example, [6am-9am] represents early morning
while [9pm-12am] corresponds to late evening. We also
calculate aggregate daily measures.

For quantifying call data, we calculate the number of
incoming, outgoing, and missed calls daily and over the
3-hour periods within the day. In a similar manner, we
calculate mean, median, and standard deviation (SD) of
the duration of incoming, and outgoing calls. Finally, we
calculate the incoming/outgoing ratio both for the number
of calls and the duration of calls on a daily basis.

For quantifying SMS data, we use a similar approach,
we calculate the number of incoming and outgoing texts
daily and over 3-hour periods within the day. We also
calculate a daily incoming/outgoing ratio of the number of
text messages received or sent respectively.

Turning the display on/off is also an indication of phone
usage. Thus, we look at the mean, median, and SD of
duration of screen on within the mentioned intervals. We
also calculate the number of the times the screen has been
turned on over these periods. Note that these two correspond
to different behaviors; Long screen-on duration is related to
actively using the phone while a great number of screen-ons
is related to consistently checking the phone which might
be a sign of anxiety or anticipation.

For location data, we calculate mean, median, and SD of
latitude and longitude along with the number of data points
that have been captured for each time period. We calculate
total location mean, median, and SD by averaging values
from latitude and longitude.

For app usage, we encode the app category using the
following list: game, email, web, calendar, communication,
social, maps, video streaming, photo, shopping, and clock.
Then, we calculate the total duration and the number of app
category usage in the different mentioned time intervals.

4.3. Interactive Surveys

Using the Movisens [21] on the mobile phone, we ad-
minister short questionnaires about overall health condition,
sleep, mood, stress, anxiety, alcohol/drugs/caffeine usage,
and social interaction; these should be completed each day
upon awakening, at bedtime and twice during the day at
random times, during the entire length of the study. For
assessing mood, we have used Positive and Negative Affect
Schedule (PANAS) [27], one of the most prevalently used
scales for measuring affect. The 20 item questionnaire has
been splitted into two 10-item questions that were adminis-
tered twice during the day at random times.



First, we preprocessed the data: we added how long
it took the participant to fill in the survey and removed
responses that took less than a second and are likely noise.
This meta-data can also be informative; for example, long
pauses while responding to surveys may represent motor
slowing (a common symptom of depression), cognitive load,
trouble remembering, or not being sure about the response.
Short response time, on the other hand, may represent
trivial answers or not reading through the questions. We
calculate total alcohol (standard drink measure) and caffeine
consumption (milligram) by summing the relevant features
from the survey. We convert categorical features to their one-
hot representation. We include day of the week as it has been
shown to influence the aggregate number of smiles which
can be an indication of positive valence mood [28].

Since HDRS is closely related to self-reported mood,
we add more detailed mood information. First, we calculate
total positive affect (PA) and negative affect (NA) on a daily
basis by averaging responses to relevant survey questions.
We add an average of the past week’s PA and NA. We
add a weighted average of PA and NA, when the effect of
affect diminishes exponentially overtime when going back
in history, e.g., yesterday’s mood is half as important as
today’s mood in the weighted average measure. We calculate
the NA/PA ratio for the daily, average weekly, and weighted
average weekly measures. To capture mood oscillation, we
include the standard deviation of mood on a weekly basis
and for the duration of the study.

4.4. Clinical Measures

During each biweekly visit, participants are assessed
by the clinician for depressive symptoms using the HDRS.
HDRS is a standard test for quantifying depressive symp-
toms which ranges between 0 and 52. Tab. 2 summarizes
the depression severity in relation to HDRS.

TABLE 2: HDRS values and levels of depression severity.

HDRS Depression Severity
0-7 Normal
8-13 Mild Depression
14-18 Moderate Depression
19-22 Severe Depression
≥23 Very Severe Depression

5. Models

5.1. Feature Transformation and Selection

Combining the carefully-crafted features results in over
700 features for our dataset. Compared to the small num-
ber of data points we have, this number of features can
easily result in over-fitting the model to the training set.
One possibility is to use regularization tricks such as L1
to enforce selection of only a small number of features.
However, for features that are non-linearly related, trans-
forming the features into a new space through a non-linear
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Figure 1: Normalized histogram of HDRS scores before and
after imputation.

transformation can be more beneficial. For example, several
noisy measurements of a similar phenomena may not be
informative on their own, but a transformed version of them
can be a better predictor. Toward this end, we tested PCA,
kernel PCA with radial-basis function kernel, and truncated
SVD methods to reduce the dimensionality of our feature-
set. We bound the number of selected features while keeping
as few features as possible to explain the variance of data.

We created 3 datasets: one including all features, one
including daily features only, and one including the daily
features and the features of the previous day. We conducted
the feature transformations on these three datasets.

5.2. HDRS Imputation Based on Survey Data

Studies have confirmed relationships between self-
reported affect and clinical ratings of depression (e.g. [29]).
In our dataset, we see a strong correlation between average
weekly negative/positive affect (M = 0.86, SD = 0.38)
and HDRS scores (M = 19.64, SD = 7.60), r = 0.70, p =
0.00, n = 441. This observation suggests utilizing self-
reported survey data to estimate the gold-standard measure,
HDRS-I, in between clinical assessments. The input features
included daily PA, NA, and NA/PA ratio. We have also
included average and standard deviation of these values over
the past week and over the whole period of the study for
the patient. Also, weekly weighted average of these values
have been included where the effect of affect diminishes
exponentially over time. We then impute the missing values
to construct a 10-times-larger dataset. Hence, we use two
sets of models to predict the HDRS score from survey data:
regularized regression and robust-to-outlier methods.

5.2.1. Regression Models. The regression methods include
lasso, ridge, and elasticNet which use L1, L2, and a com-
bination of the two as regularization metrics, respectively.
Note that the L1 regularization term acts as a feature selec-
tion mechanism by pushing coefficients of most of the vari-
ables to be exactly zero, while L2 pushes many coefficients
to near zero values but does not remove them completely.
We also included regression without regularization with the
reduced and transformed features.

1. Data points with missing mood reports from surveys have been
removed from this analysis. This reduces the number of data points from
59 available HDRS measurements to 44.
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after imputation.

Figure 3: Time-series of HDRS scores (original and pre-
dicted) for one sample user over the course of 8 weeks.

5.2.2. Robust Models. To be robust against outliers or
errors in formulation of the model, we include Theil-Sen
estimator, random sample consensus (RANSAC), and huber
algorithms. These models have a built-in sampling proce-
dure that allows a fraction of data points to be outliers.

5.2.3. Validation. For validation, we split the data into
90% training and 10% testing. We use leave-one-out cross-
validation on the training set to select the best model and
use it for imputing missing HDRS values.

5.3. HDRS Prediction Based on Sensor Data

After imputing HDRS scores, the new dataset HDRS-
I is over 500 points. This dataset is still not large enough
to be able benefit from state-of-the-art neural network tech-
niques 2. Thus, we focus on models that do not require
enormous amounts of training data. Note that self-reported
affect measures have been used only in the imputation phase
and are excluded from this step. The HDRS prediction phase
solely uses the passive wearable and phone sensor data.

5.3.1. Regression Models. Similar to the imputation phase,
we use lasso, ridge, elasticNet, and unregularized regression.

5.3.2. Robust Models. Similar to the imputation phase, we
use Theil-Sen, RANSAC, and huber methods. However, we
loop through a larger list of parameters to optimize within
each model. We should note that these models do poorly
when the feature set is large. Thus, we only use them for
the subsets or the reduced version of the data.

2. For example, long short-term memory (LSTM) network, a strong
model that retains temporal information, performs as well as predicting the
average value. We have ran LSTM on the dataset as well as an augmented
version of it. For augmentation, we have added x ∗ 0.01 ∗ SDf to each
feature f where x is a random number between -0.5 and 0.5 and SDf is
the standard deviation of the values for that feature.

5.3.3. Boosting. Boosting combines week regressors se-
quentially to improve performance. We use adaptive boost-
ing (AdaBoost) and Gaussian boosting in this category.

5.3.4. Random Forest. Random Forest is an ensemble
method with multiple decision trees. We use random forest
with different numbers of estimators.

5.3.5. Gaussian Process. Since natural phenomena usually
follow a Gaussian distribution, we use Gaussian Process
with different regularization parameters and different num-
bers of restart points to model the data.

5.3.6. Customized Ensemble Method. Finally, we com-
bine the results from these different regressors to get a more
robust estimator. The ensemble method first finds a set of
k nearest neighbors from the training set for each point. It
then chooses the model that performs best on that set as the
estimator for this point. The heuristic behind this method
is that slight modifications in the feature set do not change
the output drastically. Thus, if a classifier is working well
on similar points, chances are it works well for the current
point, as well. Looking at k nearest points as opposed to
only the most similar point is for smoothing purposes. Note
that as the points become higher dimensional, the distance
between them becomes less meaningful in explaining sim-
ilarity between the points. Thus, we only use the first 5
reduced features based on kernel-PCA and create a KD tree
and find the k nearest neighbors to the point at hand.

5.3.7. Validation. In real life, some depressed patients see
a doctor and get clinical assessments at some point in
their life. One major issue is a high relapse ratio and not
being able to regularly visit the doctor to re-assess the
improvement or worsening of depressive symptoms. In such
cases, our method could be easily deployed in real life to
passively monitor the patients after the diagnosis. Thus, we
will assume that we have at least some history for each user.

For validation, we split HDRS-I dataset into 90% train-
ing and 10% hold-out testing. However, the test set is only
chosen from the original HDRS values (rather than the
imputed ones). We further choose the test set in a way to
mimic the real-life deployment scenario: no data point from
the first two weeks is selected as test data. We use 10-fold-
cross-validation on the training set to select the best model
and use it for predicting HDRS values.

6. Results and Discussion

6.1. Imputation Phase

Root mean squared error (RMSE) is the primary metric
used to validate the imputation phase. Table 4 shows the
selected best model based on having the lowest RMSE on
the validation set. Then we report the RMSE on the hold-out
test set for each model. This model is ridge regression on
the subset of mood features from the survey data, obtaining



TABLE 3: Best prediction model.

RMSE Baseline
Model Type Model Parameters Dataset Validation Test Average Median
Regression Regression Kernel PCA subset 5.2 4.9 7.1 7.1
Robust Ransac ms=0.3 Kernel PCA subset 5.0 4.9 7.1 7.1
Boosting AdaBoost n=50, lr=1 Subset data 5.5 4.6 7.1 7.1
Random Forest - n=15 Subset data 5.4 4.6 7.1 7.1
Gaussian Process - α=0.1, n=5 Kernel PCA subset 5.3 5.5 7.1 7.1
Overall Ensemble k=1 selected by individual models 5.8 4.5 7.1 7.1
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Figure 4: Original and predicted HDRS scores for daily data from all patients over the course of 8 weeks.

Figure 5: Distribution of features that are significantly different between days with good vs. poor mental health.
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a test RMSE of 2.8. A baseline prediction of reporting the
average or median HDRS score results in an RMSE of 6.8.

Looking more closely at the model provides insights
about how the mood features correspond to the HDRS score.
Consider the coefficients with the highest absolute values:
The coefficient for weekly average positive affect is -9.3,
confirming that reported positive affect is negatively asso-
ciated with HDRS score. Another interesting observation is
the -7.4 coefficient of standard deviation of positive mood
in the previous week. Depression is usually accompanied by
anhedonia, withdrawal, and loss of engagement, which result
in consistent low positive mood. Thus, a normal variation
in positive mood is negatively associated with HDRS score.

At the same time, we see positive association between the
average weekly negative affect and the HDRS score, shown
by a positive 2.8 coefficient.

To further test the validity of the imputation model, we
plotted the distribution of HDRS scores before and after the
imputation (Fig. 1), and we used the Kolmogorov-Smirnov
(KS) test to compare these two distributions. KS could not
reject the null hypothesis of samples coming from a common
distribution. 3 Moreover, we examined the predicted levels
(based on Table 2) of depression severity before and after

3. Doriginal(M = 21.5, SD = 6.4), Dimputed(M = 21.2, SD =
6.3); ks − statistic = 0.08, p = 0.83. The small ks-statistics and large
p-value show that we cannot reject the null hypothesis.



imputation. Fig. 2 shows the bar chart of the distribution
of depression severity categories. We also tested these two
discrete-valued distributions and found they were not sig-
nificantly different4.

6.2. Prediction Phase

We primarily validate the new prediction model using
RMSE. Table 3 shows the best performing model in each
category and the overall customized ensemble method. The
test RMSE for the ensemble method is 4.5 while it is 7.1
for the average or median baseline prediction.

To provide understanding of the predictions, we have
visualized the time-series of HDRS-I values for a sample
user (Fig. 3). Each point represents the HDRS-I value
for a day. Green diamonds shows original values (either
through clinical assessment or imputation). Red circles and
gray triangles show the predictions for train and test points
respectively. One interesting observation about this plot is
the large prediction error in the highlighted area. A clinician
we work with suggested it might be due to the placebo
effect of being in the study. Many patients begin to feel
better soon after joining the study, and report this, but they
fall back into their depressed trend after the novelty effect
wears off. We hypothesize that the placebo effect influences
momentary assessment of mood quickly, while it is not
adequate to influence behavioral or physiological signals.
Thus, we see the red dots showing that the prediction based
on the objective passive data, while it improves a little, does
not improve as much as the self-reported (or their imputed)
values. Fig. 4 visualizes the predicted and original values for
all the data points from different users with the same color
coding. As shown in both figures, the predictions follow the
overall trend very well but miss the short term variations of
HDRS-I. We should note that HDRS is meant to measure
depressive symptoms over the course of two weeks. Thus,
from a clinical perspective, it is not supposed to vary much
over consecutive days.

The final prediction based on the ensemble algorithm
is a combination of different methods and sometimes non-
linear feature transformations of the “subset data”. To gain
deeper understanding of the relationship between the feature
space and the resulting predictions we create two classes of
points: the top 20% and the bottom 20% of the predicted
HDRS-I scores. The former group represents days when the
patient is doing very poorly and the latter represents the
days when the patient is doing well or showing minimal
depressive symptoms. We have compared the distribution

4. ks− statistic = 0.01, p = 1.00

TABLE 4: Best imputation model.

Model Info.
Name Ridge (L2-Regularized Regression)
Dataset Mood Subset (PANAS)

RMSE

Validation 3.4
Test 2.8
Baseline 1 (Average) 6.8
Baseline 2 (Median) 6.8

of all the features from the “subset data” for these two
groups using the KS test. Table 5 summarizes the 8 most
significantly different distributions (highest ks-statistics and
lowest p-values) and Fig. 5 depicts the differences where
blue and orange show the good and poor mental health group
respectively. The poor mental health group has more irreg-
ular sleep, moves much less on average, shows less motion
variability, and is active a lower percentage of the time.
Also, this group receives fewer incoming messages and has
less variable location patterns. Another interesting finding
is the EDA asymmetry. The number of skin conductance
responses (SCR) between left and right wrist are mostly
similar in the good mental health group. However, we see
stronger asymmetry (more SCR peaks on the right wrist) for
the poor mental health group. A similar trend is observed
in average EDA magnitude.

TABLE 5: Most significantly different distributions of fea-
ture values for days with good vs. poor mental health.

Category Feature ks-
statistic

p-
value

Sleep Sleep regularity index 0.51 2e− 9

Motion
Average motion 0.49 3e−10
SD of motion 0.47 3e− 9
Fraction of time in motion 0.44 4e− 8

Communication Daily # incoming SMS 0.44 3e− 9
Location Total SD of location (9AM-6PM) 0.34 8e− 6
Physiology Difference in #SCR peaks (right-left) 0.29 8e− 4

Mean EDA difference (right-left) 0.21 4e− 2

These analyses are based on data from 12 participants
from Massachusetts. Further studies are needed to confirm if
the findings are generalizable to other populations, as well.

6.3. Limitations

In the future, we would like to explore the feasibility of
our methods for other scenarios, for example having hold-
out test subjects resembling when some patients have no
observed data in the training phase. We know that there is
some interdependency within patients. The variety of our
prediction models and the ensemble methods can learn to
account for individual differences. However, for future study,
we would like to explicitly model that by comparing against
mixed-effect models and modeling the patients’ variations
from their baseline. In this paper, we included several post-
hoc analyses to discover more informative data streams.
For future study, we would like to further explore the
discriminative power of those features separately.

7. Conclusion

In this paper, we showed the feasibility of continuously
measuring depressive symptoms using a new method that
requires only passive data captured from built-in sensors
of a regular android phone and E4 wristbands, including
measures of EDA, sleep patterns, motion, communication,
location changes, and phone usage patterns. Using a novel
combination of machine learning techniques, we were able



to predict the imputed Hamilton Depression Rating Scale
(HDRS) values on a hold-out set, obtaining a low error
rate of 4.5 RMSE. Moreover, a post-hoc statistical analysis
showed that poor mental health was associated with more
irregular sleep, less motion, fewer incoming messages, less
variability in location patterns, and higher asymmetry of
EDA between the right and left wrists.
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[10] G. Valenza, C. Gentili, A. Lanatà, and E. P. Scilingo, “Mood recogni-
tion in bipolar patients through the psyche platform: Preliminary eval-
uations and perspectives,” Artificial intelligence in medicine, vol. 57,
no. 1, pp. 49–58, 2013.

[11] O. Mayora, M. Frost, B. Arnrich, F. Gravenhorst, A. Grunerbl,
A. Muaremi, V. Osmani, A. Puiatti, N. Reichwaldt, C. Scharnweber
et al., “Mobile health systems for bipolar disorder: the relevance of
non-functional requirements in monarca project,” in E-Health and
Telemedicine: Concepts, Methodologies, Tools, and Applications. IGI
Global, 2016, pp. 1395–1405.

[12] S. Saeb, M. Zhang, C. J. Karr, S. M. Schueller, M. E. Corden,
K. P. Kording, and D. C. Mohr, “Mobile phone sensor correlates
of depressive symptom severity in daily-life behavior: an exploratory
study,” JMIR, vol. 17, no. 7, p. e175, 2015.

[13] M. Rabbi, S. Ali, T. Choudhury, and E. Berke, “Passive and in-situ
assessment of mental and physical well-being using mobile sensors,”
in UbiComp 2011. ACM, 2011, pp. 385–394.

[14] H. Dibeklioglu, Z. Hammal, and J. F. Cohn, “Dynamic multimodal
measurement of depression severity using deep autoencoding,” IEEE
Journal of Biomedical and Health Informatics, 2017.

[15] S. Scherer, G. M. Lucas, J. Gratch, A. S. Rizzo, and L.-P. Morency,
“Self-reported symptoms of depression and ptsd are associated with
reduced vowel space in screening interviews,” IEEE Transactions on
Affective Computing, vol. 7, no. 1, pp. 59–73, 2016.

[16] M. Valstar, B. Schuller, K. Smith, T. Almaev, F. Eyben, J. Krajewski,
R. Cowie, and M. Pantic, “Avec 2014: 3d dimensional affect and
depression recognition challenge,” in Proceedings of the 4th Interna-
tional Workshop on Audio/Visual Emotion Challenge. ACM, 2014,
pp. 3–10.

[17] K. Kroenke and R. L. Spitzer, “The phq-9: a new depression diag-
nostic and severity measure,” Psychiatric annals, vol. 32, no. 9, pp.
509–515, 2002.

[18] J. E. Broderick and G. Vikingstad, “Frequent assessment of negative
symptoms does not induce depressed mood,” Journal of clinical
psychology in medical settings, vol. 15, no. 4, pp. 296–300, 2008.

[19] A. Guidi, S. Salvi, M. Ottaviano, C. Gentili, G. Bertschy, D. de Rossi,
E. P. Scilingo, and N. Vanello, “Smartphone application for the
analysis of prosodic features in running speech with a focus on bipolar
disorders: system performance evaluation and case study,” Sensors,
vol. 15, no. 11, pp. 28 070–28 087, 2015.
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