

A Visual Programming Framework for Wireless

Sensor Networks in Smart Home Applications

Technical Report

*CISTER Research Center

CISTER-TR-150207

2015/04/07

Maria Serna*

Cormac J. Sreenan

Szymon Fedor

Technical Report CISTER-TR-150207 A Visual Programming Framework for Wireless Sensor Networks ...

© CISTER Research Center
www.cister.isep.ipp.pt

1

A Visual Programming Framework for Wireless Sensor Networks in Smart Home

Applications

Maria Serna*, Cormac J. Sreenan, Szymon Fedor

*CISTER Research Center

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail: mdlam@isep.ipp.pt

http://www.cister.isep.ipp.pt

Abstract

In this paper, we build upon the Internet of Things (IoT) paradigm, with aim of delivering networked solutions that

enable to connect not only single sensors, but also whole wireless sensor networks (WSN) to the Internet in a

secure, simple and efficient way, and describe the design and implementation of a smart-home management

system. The system is composed of a lightweight tool with an intuitive user interface for commissioning of IP-

enabled WSN with constrained capabilities. The solution includes a visual programming interface with a common

framework for discovering smart home services on the constrained WSN, and a code analysis and translation

engine to generate python code. This engine analyses the application rules defined with the graphical user

interface and translates them into distributed application scripts. The system also includes modules to plan the

optimization of the deployment, and deploy and start the generated code. A prototype of the system, with the

visual programming solution and code generation module developed is presented in this paper.

A Visual Programming Framework for Wireless
Sensor Networks in Smart Home Applications

M. Ángeles Serna1*, Cormac J. Sreenan1
1 Dept. of Computer Science

University College Cork
Ireland

m.serna@cs.ucc.ie, cjs@cs.ucc.ie

* CISTER/INESC TEC
ISEP, Polytechnic Institute of Porto

Porto, Portugal
mdlam@isep.ipp.pt

Szymon Fedor2†
2 United Technologies Research Center

(UTRC)
Cork, Ireland

szymon.fedor@gmail.com

Abstract—Most of the currently deployed integrated home
management products require an experienced technician to
install and configure the system. In this paper, we build upon the
Internet of Things (IoT) paradigm, with the aim of delivering
networked solutions that enable multi-node wireless sensor
networks (WSNs) to connect to the Internet in a secure, simple
and efficient way. We also describe the design and
implementation of a smart-home management system. The
system is composed of a lightweight tool with an intuitive user
interface for commissioning of IP-enabled WSNs. The solution
includes a visual programming interface with a common
framework for discovering smart home services on the WSN, and
a code analysis and translation engine to generate Python code.
This engine analyses the application rules defined with the
graphical user interface and translates them into distributed
application scripts. The system also includes modules to plan the
optimization of the deployment, and deploy and start the
generated code. In this paper we present a prototype of the
system, with the visual programming solution and code
generation module.

Keywords—IoT; WSN; Macroprogramming; CoAP

I. INTRODUCTION
In today’s homes we can see more and more smart devices.

They can enable functionalities such as: automatic heating and
air-conditioning based on multiple sensors, as well as
environmental or alarm systems that cooperate with other
smart devices. With this diversity of smart devices around the
house, programming all of them becomes a difficult task. The
increasing number of devices is also being enabled by the
trend of the so-called Internet of things (IoT), which among
other factors, is relying in a set of standards to enable
cooperation between these different smart devices.

Most of the currently available integrated home
management products require considerable technical know-
how to install and configure the system. However, do it
yourself (DIY) smart home systems are emerging at very
affordable costs, and therefore their adoption is increasing

significantly. We can already observe novel solutions for
home energy management with a very intuitive
commissioning process available in the market [1], [2]. But we
are lacking technology enabling DIY multi-application smart
home systems where a user can discover available services
provided by the wireless sensor networks (WSNs) and
configure/reconfigure them using intuitive tools as the system
evolves. Another example is when a property changes
ownership and the new owner needs to have tools that make it
possible to learn about the deployed devices, and easily
configure the system preferences.

In this paper, we address the complexity of managing the
increasing number of smart devices in the home by developing
a solution to enable easy configuration and upgrade of WSNs
using a graphical programming interface. We target novice
users, requiring minimal learning of the system to be used, and
aim at enabling users to easily define application high level
behaviour, avoiding installation of client applications to
commission the WSN and complex configuration. The
solution builds upon previously developed technologies: IoT-
enabled sensor and actuator networks, and a code deployment
and runtime environment for Python scripts [3]. Our solution
demonstrates the ability to use simple intuitive interfaces to
configure and manage IoT-based WSNs.

The key contribution of this paper is a common framework
for discovering the smart home devices and find available
services. The tool includes an engine that analyses and
translates the user-defined rules binding the smart home
services into the distributed application code. To the best of
our knowledge, this set of combined features is not available
in previous smart home systems, and their integration
significantly help making these systems more usable.

This paper is organized as follows. Section 2 describes the
system overview and the architecture. Section 3 shows a
prototype of the visual programming environment. Section 4
performs a preliminary evaluation of this interface. Section 5
overviews related work in programming WSNs. Finally,
Section 6 presents our conclusions.

* This work was completed while the author was with University College
Cork, Ireland.
† The author is now with MIT Media Lab, 75 Amherst St, Cambridge, MA
02139

II. SYSTEM OVERVIEW AND ARCHITECTURE
Smart home systems are still very cumbersome for the

novice user, and require a significant installation effort. To
address this problem, we have built a novel WSN system for
the smart home that allows users to visually define the
behaviour of the WSN, including automated support for
device and resource discovery.

The workflow of the system is depicted in Fig. 1. First,
node and resource discovery makes it possible to show the
user the available functionalities, then the user defines a
program visually in a graphical user interface. This user-
defined program is then translated into a distributed
application composed of several scripts, which are analysed
with the purpose of optimizing resource usage. Finally, the
system interacts with a WSN via an HTTP-CoAP proxy to
deploy and execute the application. The system relies on a
code (Python scripts) deployment solution developed in [3]
(note that other similar solutions exist [4]), which makes use
of the Constrained Application Protocol (CoAP) [5].

The visual user interface is based on Blockly [6], a web-
based visual block programming environment developed by
Google, where users manipulate and connect blocks that look
like puzzle pieces to build their programs. Blockly is very
extensible, allowing a person to define custom blocks and
code generators. There are a few important advantages of
Blockly when compared to predecessors. It executes in a web-
browser, with no need for downloads or plugins. And it is
open source, allowing for free use and modification. Blockly
proved to be an attractive option as it is suitable for novice
users to define small scripts that define the behaviour of a
WSN. It allows for the definition of custom blocks (including

for sensors/actuators), generates Python code out-of-the-box,
and additionally allows for necessary customization of this
generator.

It is important to note that each sensor/actuator block is a
self-contained block that might encapsulate considerable
complexity, as they can reference groups of nodes/resources
which need to be discovered and eventually configured.

Blockly can generate code for JavaScript and Python. In
our work we have leveraged the code generation features of
Blockly to produce Python code compatible with the code
deployment solution developed in [3]. Because the code
generated by the block is tailored to fit a specific functionality,
and a typical program will be composed of a few blocks, the
resulting generated code avoids inefficiencies and redundancy
usually associated with automatically generated code.

Finally, for execution and deployment, Blockly needs to
interact with the constrained WSN using a CoAP-based
interface of the runtime executing in each node.

The workspace presented to the user is dynamically
constructed according to the nodes and resources discovered
in the network. At load time, Blockly triggers a node and
resource discovery that allows mapping the nodes available in
the WSN with the blocks presented to the user. This mapping
is done automatically, based on the CoAP resource
descriptions of the nodes.

The overall architecture is depicted in Fig. 2, which shows
example nodes on the WSN (the light, presence, temperature
sensors) and depicts the proxy server, which translates HTTP
requests from the Internet network to CoAP. The system
comprises the following main elements:

HTTP

HTTP HTTP

COAP

COAP

COAPCOAP

Cf Proxy / HTTP
Server

server

server

server

HTTP

Fig. 2. Architecture Overview.

Fig. 1. System Workflow.

Node and
 Resource
Discovery

Visual
Program

Description

 Translation
 to Scripts

 Code
 Analysis

 Code
 Deployment

 and Execution

• A WSN, composed of nodes running an embedded
protocol stack as depicted in Fig. 3, which includes a
runtime for Python scripts managed using a CoAP-
based interface.

• A proxy server that translates HTTP requests to
CoAP. We used the available implementation of proxy
server Californium Proxy Server [7].

• A web application based on Blockly, which allows
end users to specify programs using a visual editor.

• A web server that serves the web application and
provides basic webservices (such as translation of
scripts into the format used by runtime).

III. PROTOTYPE
We have built a prototype of the visual programming

environment which presents a workspace that allows the user
to visually compose programs using a set of pre-defined
blocks. The prototype includes basic code generation features
and is able to interact with the WSN.

The workspace presented to the user is dynamically
constructed according to the nodes and resources discovered
in the network. Fig. 4 presents a sample script in the user

workspace that turns on the light depending on the value of
luminance, concretely if the value of luminance sensor is less
than 50.

An example of a simple alarm system to detect intrusions
into the house is presented in Fig. 5. When the alarm is active
(we have omitted the activation conditions for simplicity)
some motion is detected or any door is open the alarm is
triggered. The script shows that several actions could be
performed, in this case when the alarm is triggered a LED red
is set ON, the alarm siren sounds and an instant message is
sent to the user (turning on the red LED). For advanced users,
the activation/deactivation options can be shown by using the
block modifier. This, for example, could allow the user to
define that only a subset of the doors is checked at activation
time.

IV. EVALUATION
We have performed a preliminary evaluation of the

interface using the well-established cognitive dimensions
framework [8], with the results presented in Table 1. We refer
the interested reader to [8] for definitions of the various
dimensions, but in summary we conclude from the qualitative

Contiki O
S

CoAP

IEEE 802.15.4
IEEE 802.15.4e / ContikiMAC
CSMA / link-layer bursts
6LoWPAN
IPv6 / RPL
UDP

Python Runtime

Fig. 3. WSN Node Embedded Protocol Stack.

Fig. 4. Workspace: Sample Script.

When alarm is triggered:

• a led is set

• the alarm siren sounds

• an SMS is sent

Fig. 5. Example Blockly Script.

analysis that the proposed system satisfies many of the key
facets of good interface design. In our case, the high level of
abstraction produces hidden dependencies and for this reason
the closeness of mapping is classified as being medium.
However, the user does not need to reason with difficult
mental operations. The program structure maps closely onto
the problem structure by choosing the right abstractions. The
diffuseness (the number of icons) is very low, for example, if
we have one hundred doors in our system the interface only
will show to the user one component.

We have conducted manual evaluation of the code
generated by our tool, by comparing it with what would be
produced by an expert developer, to find that both generally
match very closely. As a future work, we would like to
develop a more systematic evaluation of the code generated.

V. RELATED WORK
Programming WSN has attracted the attention of many

researchers that recognized long ago that their use in the real-
world would only be possible if enabled by the existence of
simple and easy to use programming support. Essentially,
previous work in this area can be classified as: (i) node-level
approaches, that attempt to provide a unified framework for
developing applications by abstracting from network and
operating-system details (such approaches include query-
based frameworks [9] [10], or middleware approaches [11]),

and (ii) macro scale approaches, which rely on higher level
network abstractions such as logical neighbourhoods [12] or
spatially-distributed data streams [13]. The general area of
programming WSN is not the focus of our work, and the
reader is referred to an extensive survey of programming
approaches for WSN [14].

In this document, we are focusing on visual programming
approaches for WSN and we will now summarize such
approaches. We distinguished four main categories: (i) Work
developed specifically for TinyOS, (ii) Dataflow-based and
web-based approaches, (iii) one Business Process Modelling
inspired approach and (iv) approaches that use puzzle like
pieces to define programs. We will describe each one in the
remainder of this section.

A. Visually Combining TinyOS modules
Many visual development environments were developed to

provide an overview of the node-level program and construct
programs by visually combining (wire) TinyOS components
together [15][16]. Both VipTOS and RaPTEX target a
scenario of application prototyping, where users will develop
complex applications, and use these tools to improve the
design and validate the application. This is different from our
work, which enables the development and deployment of
small applications, developed by non-experts. TOSDev and
YETI [17][18] are essentially code editors with some
(NesC/TinyOS specific) added functionality, and do not go a
long way in facilitating the task of application development
for WSN. Noticeably, these environment focus on node-level
programming, and do not include any feature particularly
directed for interactions between nodes.

B. Dataflow-based and Web-based Approaches
Dataflow is one appealing model that has been also been

employed in visual programming of WSN. In such model,
users specify diagrams of blocks that are graphical
representations of functions. At runtime, a block executes
once it receives all required inputs. When a block executes, it
produces output data and passes the data to the next block in
the dataflow path. The execution order is therefore determined
by the flow of data through the block diagrams. Two different
dataflow approaches have been identified. ClickScript [19]
and LabVIEW WSN Module [20], and will be described next.

ClickScript is a Web application that allows to visually
build scripts from the browser. The user specifies a block
diagram made up of components (the blocks) and wires which
connect the components. Each component represents a
function (symbolized by the picture on the component) and
has input and output sockets. The different functionalities of a
component are symbolized by the picture on it [19][21].
Several extensions to connect ClickScript to WSN have been
made, notably a recent work has used ClickScript to generate
JavaScript scripts that would be executed on the WSN by
Actinium [22], a RESTful (CoAP-based) runtime container
that allows dynamic installation, update, and removal of
JavaScript apps [23]. Because ClickScript is a web-based
application and cannot communicate directly using CoAP, the
authors have built a Web Socket/CoAP proxy to enables
communication between ClickScript and Actinium.

Table 1. Comparative Table.

Cognitive
Dimension Evaluation

Abstraction
Gradient

High initial levels of abstraction, but new
abstractions are not supported.

Closeness of
mapping

Medium, not many ‘programming games’ need to
be learned.

Consistency High, when some of the language has been learnt,
the rest can be inferred.

Diffuseness Low, very few icons or graphic entities are
required to express a meaning.

Error-proneness Very low, the design of the notation does not
induce ‘careless mistakes’.

Hard mental
operations

Low, the user does not need to resort to fingers or
penciled annotation to keep track of what’s

happening.
Hidden

dependencies
Some, not all the dependencies are fully visible

due to the high initial level of abstraction.
Premature

commitment
Low, initial design decisions do not limit the final

result.
Progressive
evaluation

No, the user cannot execute a partially-complete
program to obtain feedback on ‘How am I doing’.

Role-expressiveness Easy to understand, the reader can see how each
component of a program relates to the whole.

Secondary notation No, the user cannot add comments.

Viscosity Low, the user does not require much effort to
perform a single change.

Visibility Good, every part of the code is simultaneously
visible.

ClickScript is an interesting approach that as shown to be
effective as a visual programming interface for WSN.
Nevertheless, while it facilitates programming, it is not
targeting the novice user of smart home systems, as it presents
a great number of features that are not application specific,
which require significant computer knowledge by the user.

LabVIEW includes a Wireless sensor Module that allows
using LabVIEW graphical programming interface to embed
applications on WSN measurement nodes [20]. LabVIEW is a
widely used tool, however it is proprietary, and it is not
targeted for the novice user of smart home systems, as it does
not target a specific domain, and requires the user to know
about particularities of LabVIEW and of the WSN.

IFTTT [32] this web tool allows to connect different data
sources and websites to automate tasks based on “if”
conditions. This tool provides an interesting approach for
novice users, but relies on web connectivity (our solution is
based on web standards, but can be based on a local
installation), and the programming model based on if
conditions is quite restricted.

C. Programming WSN using Business Process Modelling
One large effort for facilitating programming of WSN and

integrating them in business processes was carried out by the
MakeSense Project [24]. MakeSense is a unified programming
framework and a compilation chain that, from high-level
business process specifications, generates code ready for
deployment on WSN nodes. The architecture of MakeSense
has three different layers: i) an application layer concerned
with business processes and their modelling; ii) a macro
programming layer concerned with the distributed execution
of activities within the WSN; iii) a run-time layer concerned
with the low-level aspects supporting the above and enabling
self-optimization [24]. This is an interesting project that has
many interesting ideas, some that could be of use for our work
(e.g. the concept of including performance annotations, such
as reliability even, or minimum lifetime), but is mainly
targeting experts that can specify processes using the BPMN.

D. Using Puzzle Pieces to Build Programs
There are a number of visual programming tools based on

the idea of using puzzle pieces to build programs. This idea
was originally developed as an educational programming
language that allows people of any age to experiment with
programming by putting together blocks to control images,
music, and sounds [25], and has been also applied in many
other environments such as Scratch [26] presented in Fig. 6,
OpenBlocks [27] (a graphical programming editor later
adopted by Google for Android’s App Inventor), TinyInventor
[28], Blockly [6], and many other.

Because the shape of the blocks makes clearer how they
can be connected together, the user does not have to learn the
syntax of the language, as it is embedded in the shape of the
pieces. The user is also presented will all the pieces he can
interact with, avoid making him remember all the keywords of
the language and objects he can interact with.

The work in [29], while somewhat old, presents a good
structuring and taxonomy of languages and environments
designed to make programming more accessible to novice
programmers. The work also points out some future work in
novice programming environments and languages, which
relates to Alice [30], an open source programming language
with educational purposes. Alice was unique in the sense that
it was specially designed for learning purposes. The evolution
of Alice is called Storytelling Alice [31]. Scratch [26] also has
similar ideas, and is a visual programming environment that
allows users to learn computer programming while working
on personally meaningful projects such as animated stories
and games. Scratch has a puzzle-based interface and makes
programming very accessible for novice users. Scratch
however is targeted to be a standalone application, and not
embedded in a smart home system.

TinyInventor [28] is based on Open Blocks [27], a java
library for creating puzzle-based programming interfaces,
where users can drag blocks together to build an Android
application. In TinyInventor, the programs are defined as a
collection of functional blocks where some blocks are running
on sensors (nesC generated code) and some on personal
computers (Python generated code). TinyInventor unifies the
development of mote and PC code by requiring common
cross-platform programming abstractions (thread based
execution model and IPv6 communication primitives), which
facilitates application development. However, TinyInventor
focuses on the specification of node behaviour and requires
considerable effort to program a full usable distributed
application. Note also that according to the online code
repository, TinyInventor was not updated since October 2011.

Our systems makes use of Blockly [6], and, as put by the
authors , it "was influenced by App Inventor, which in turn
was influenced by Scratch, which in turn was influenced by
StarLogo".

VI. CONCLUSIONS
We have built a prototype that allows users to visually

define the behaviour of a WSN. The user defines a program
visually in a Blockly-based user interface, and then this
program is translated into a distributed application composed
of several scripts, that are deployed and executed in the WSN.
The prototype includes relevant system features: IoT-enabled

Fig. 6. Scratch [25].

sensor and actuator network, user-friendly programming
interface, support for device and resource discovery and over-
the-air code generation and deployment.

Our proposed system exhibits many interesting features,
previously not integrated in a single solution: (i) no need for
installation or downloads, as the application is web based,
requiring no installation of software by the end user; (ii) avoid
errors, because the puzzle pieces approach eliminates syntax
errors, and frees the user from such concerns (iii) our system
provides a low barrier to entry as the block shapes give visual
feedback about how they can be combined (iv) the system
offers domain abstractions, the visual programming interface
includes blocks tailored for the target applications, and these
include representations to deal with groups, location and state
of sensors; (v) the programming interface has a small number
of elements, but supports the specification of a broad range of
behaviours; (vi) as a result of the small number of elements in
each program, the generated code greatly avoids inefficiencies
and redundancy usually associated with automatically
generated code, (vii) the solution leverages the features
existing IoT-related protocols to facilitate deployment and
resource discovery.

ACKNOWLEDGMENT
This work was sponsored by UTRC Ireland, and was also

partially supported by National Funds through FCT
(Portuguese Foundation for Science and Technology) and by
ERDF (European Regional Development Fund) through
COMPETE (Operational Programme 'Thematic Factors of
Competitiveness') within project FCOMP-01-0124-FEDER-
028990 (PATTERN) and by FCT and the EU ARTEMIS JU
funding, within project ARTEMIS/0004/2013, JU grant nr.
621353 (DEWI , www.dewi-project.eu).

REFERENCES
[1] Nest Thermostat, http://www.nest.com/. 2015.
[2] Tado Thermostat, http://www.tado.com/en/. 2015.
[3] S. Bocchino, S. Fedor, and M. Petracca, “PyFUNS: A Python
Framework for Ubiquitous Networked Sensors,” in Proceedings 12th
European Conference, EWSN 2015., 2015, pp. 1–8.
[4] D. Alessandrelli, M. Petracca, and P. Pagano, “T-Res : enabling
reconfigurable in-network processing in IoT-based WSNs,” in IEEE
International Conference on Distributed Computing in Sensor Systems
(DCOSS), 2013, pp. 337 – 344.
[5] Constrained Application Protocol (CoAP),
https://datatracker.ietf.org/doc/draft-ietf-core-coap/. 2013.
[6] Blocky a visual programming editor,
http://code.google.com/p/blockly/. 2013.
[7] Californium (Cf) CoAP framework in Java,
http://people.inf.ethz.ch/mkovatsc/californium.php. 2013.
[8] T. R. G. Green and M. Petre, “Usability Analysis of Visual
Programming Environments : A ‘ Cognitive Dimensions ’ Framework,” J.
Vis. Lang. Comput., vol. 7, pp. 131–174, 1996.
[9] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong,
“TinyDB: an Acquisitional Query Processing System for Sensor Networks,”
ACM Trans. Database Syst., vol. 30, no. 1, pp. 122–173.
[10] Y. Yao and J. Gehrke, “The Cougar Approach to In-Network
Query Processing in Sensor Networks,” SIGMOD Rec., vol. 31, no. 3, pp. 9–
18.

[11] C. Curino, M. Giani, M. Giorgetta, A. Giusti, A. L. Murphy, and
G. Pietro Picco, “Mobile data collection in sensor networks: The TinyLime
middleware,” Pervasive Mob. Comput, vol. 1, no. 4 (December 2005), pp.
446–469, 2005.
[12] L. Mottola and G. Pietro Picco, “Programming wireless sensor
networks with logical neighborhoods,” in Proceedings of the first international
conference on Integrated internet ad hoc and sensor networks (InterSense
’06), 2006.
[13] R. Newton, G. Morrisett, and M. Welsh, “The Regiment
Macroprogramming System,” in International Conference on Information
Processing in Sensor Networks (IPSN’07), 2007.
[14] L. Mottola and G. Pietro Picco, “Programming Wireless Sensor
Networks : Fundamental Concepts and State of the Art,” ACM Comput. Surv.,
vol. 43, no. 3, pp. 19:1–19:51, 2011.
[15] E. Cheong, E. A. Lee, and Y. Zhao, “Viptos: a graphical
development and simulation environment for TinyOS-based wireless sensor
networks,” in SenSys ’05, 2005.
[16] J. B. Lim, B. Jang, S. Yoon, M. L. Sichitiu, and A. G. Dean,
“RaPTEX: Rapid prototyping tool for embedded communication systems,”
ACM Trans. Sens. Networks, vol. 7.
[17] W. P. McCartney and N. Sridhar, “TOSDev: a rapid development
environment for TinyOS,” in SenSys ’06, 2006, pp. 387–388.
[18] N. Burri, R. Flury, S. Nellen, B. Sigg, P. Sommer, and R.
Wattenhofer, “YETI: an Eclipse plug-in for TinyOS 2.1,” in SenSys ’09,
2009, pp. 295–296.
[19] D. Guinard, V. Trifa, F. Mattern, and E. Wilde, “From the Internet
of Things to the Web of Things : Resource Oriented Architecture and Best
Practices,” in Architecting the Internet of Things, 2011, pp. 97–129.
[20] The LabVIEW Wireless Sensor Network Module - Under the
Hood, http://www.ni.com/white-paper/9006/en/. 2013.
[21] ClickScript,
http://clickscript.ch/ide/cs/util/tutorial/tutorialEN.html. 2013.
[22] M. Kovatsch, M. Lanter, and S. Duquennoy, “Actinium: A
RESTful runtime container for scriptable Internet of Things applications,” in
3rd IEEE International Conference on the Internet of Things (loT’ 12), 2012,
pp. 135–142.
[23] L. Mainetti, V. Mighali, L. Patrono, P. Rametta, and S. L. Oliva,
“A novel architecture enabling the visual implementation of Web of Things
applications,” in 21st International Conference on Software,
Telecommunications and Computer Networks (SoftCOM), 2013, pp. 1–7.
[24] F. Casati, F. Daniel, G. Dantchev, J. Eriksson, N. Finne, S.
Karnouskos, P. Moreno, L. Mottola, F. J. Oppermann, G. Pietro Picco, A.
Quartulli, K. Römer, P. Spieß, S. Tranquillini, and T. Voigt, “Demo Abstract:
From Business Process Specifications to Sensor Network Deployments,” in
EWSN 12, Poster and Demo Proceedings, 12AD, pp. 25–26.
[25] J. Maloney, M. Resnick, N. Rusk, B. Silverman, and E. Eastmond,
“The Scratch Programming Language and Environment,” Trans. Comput.
Educ., vol. 10.
[26] M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk, E.
Eastmond, K. Brennan, A. Millner, E. Rosenbaum, J. Silver, B. Silverman,
and Y. Kafai, “Scratch: Programming for All,” Commun. ACM, vol. 52, no.
11, pp. 60–67, Nov. 2009.
[27] R. V. Roque., “OpenBlocks : an extendable framework for
graphical block programming systems,” Massachusetts Institute of
Technology, 2007.
[28] M. T. Hansen and B. Kusy, “TinyInventor : A Holistic Approach
to Sensor Network Application Development,” in Extending the Internet to
Low power and Lossy Networks. IPSN, 2011.
[29] R. Pausch and C. Kelleher, “Lowering the Barriers to
Programming: A Survey of Programming Environments and Languages for
Novice Programmers,” 2003.
[30] C. Kelleher, “Alice: Using 3D Gaming Technology to Draw
Students into Computer Science,” in Game Design and Technology Workshop
and Conference, 2006, pp. 16–20 (Invited paper).
[31] C. Kelleher, “Motivating Programming : using storytelling to make
computer programming attractive to middle school girls School,” 2006.

