
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1



Abstract— An emerging trend in many applications is to use

resource-constrained wireless devices for machine-to-machine

(M2M) communications. The observed proliferation of wireless

embedded systems is expected to have a significant impact on

future M2M applications if the services provided can be

automatically discovered and accessed at runtime. In order to

realize the decoupling of M2M applications and services, energy

efficient service discovery mechanisms must be designed so as to

minimize human intervention during configuration and

management phases. However, many traditional service

discovery protocols cannot be applied to wireless constrained

devices because they introduce too much overhead, fail in a

duty-cycled environment or require significant memory

resources. To address this, either new protocols are being

proposed or existing ones are adapted to meet the requirements

of constrained networks. In this article, we provide a

comprehensive overview of service discovery protocols that have

been recently proposed for constrained M2M communications

by the Internet Engineering Task Force (IETF). Advantages,

disadvantages, performance and challenges of the existing

solutions for different M2M scenarios are also analyzed.

Index Terms—Service Discovery, Resource Discovery, M2M,

Low Power Wireless Communications, Constrained Application

Protocol (CoAP), Domain Name System (DNS).

I. INTRODUCTION

ACHINE-TO-MACHINE (M2M) communications have

been in existence for many years in the context of wired

networks, for example Supervisory Control And Data

Acquisition (SCADA) and Building Automation and Control

Networks (BACnet). Due to the advent of new standards for

low power wireless communications and the desire for mobile

operators to find new sources of revenue, it is only recently

that M2M wireless communications are gaining greater

attention. Wireless low power devices are highly attractive in

many scenarios due to the fact that they can be deployed in a

wide range of applications and also easily retrofitted, thus

Manuscript received November 1, 2012.

B. Carballido Villaverde, R. De Paz Alberola, A. J. Jara and Szymon Fedor

are with United Technologies Research Centre, Cork, Ireland (phone:

+353214508440; e-mail: {carbalb, depazar, fedors}@utrc.utc.com,

jara@ieee.org.

D. Pesch is with the Nimbus Centre for Embedded Systems Research, Cork

Institute of Technology, Cork, Ireland (phone: +353214335171; e-mail:

dirk.pesch}@cit.ie.

S. K. Das is with the Center for Research in Wireless Mobility and

Networking, Department of Computer Science and Engineering, University

Texas at Arlington, USA (phone: +18172727405; e-mail: das@cse.uta.edu).

significantly reducing installation costs. Moreover, many low

power devices can work unattended for years, hence they are

considered an excellent candidate for M2M applications such

as building automation, where thousands of devices need to

be deployed and maintained at a very low cost.

Up until recently low power networks architecture consists

of a collection of low power devices reporting their gathered

information to a sink which in turn disseminates the

information to the outside world. This approach does not truly

achieve direct M2M communications between any two peer

devices. With the introduction of IP protocols into low power

devices, the true potential of M2M communications can be

realized in the sense that a unique device becomes

discoverable and addressable by any other device remotely or

locally [1]. Thus, low power or constrained M2M

communications are considered as communications between

two devices, where one of them is a constrained device,

locally or remotely without the need for reporting to

intermediary nodes. The advantage of this type of

communications is that they enable applications where

constrained sensors or actuators can report to servers (e.g.

Smart Grid applications [2]) or be accessed by remote users

(e.g. new generations of Home Automation applications

[3][4]), which open up a complete new market based on

globally accessible low power devices.

However, a significant challenge for low power M2M

wireless communications to be a success in reality is to make

these devices as autonomous as possible such that once

deployed, they become “invisible”. For this purpose, low

power devices should require minimal human intervention at

every stage of their operating life. This is important for large

networks where configuration and maintenance of hundreds

of devices often becomes a significant challenge, if not a

burden, in particular when wireless devices join or leave the

network as they move around the environment and/or their

connectivity changes.

The traditional approach to reduce configuration and

administration of network devices is with the help of service

discovery mechanisms [1]. Specifically, discovery protocols

allow devices and services to automatically become aware of

the functionality and identity of other devices and services in

the network without the need for human intervention. For

example, a low power temperature sensing device may use a

service discovery protocol to query other devices in the same

Service Discovery Protocols for Constrained

Machine-to-Machine Communications

Berta Carballido Villaverde, Rodolfo De Paz Alberola, Antonio J. Jara, Szymon Fedor, Sajal K. Das and Dirk Pesch

M

mailto:fedors%7D@utrc.utc.com
mailto:jara@ieee.org
https://www.researchgate.net/publication/233731542_Standardized_Protocol_Stack_For_The_Internet_Of_Important_Things?el=1_x_8&enrichId=rgreq-d4389bef4b2205cb5e6d1eb0640625d5-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU5MTg5OTtBUzozMzAwNjA1NzkwMDAzMjJAMTQ1NTcwMzk4MjY2MQ==
https://www.researchgate.net/publication/233731542_Standardized_Protocol_Stack_For_The_Internet_Of_Important_Things?el=1_x_8&enrichId=rgreq-d4389bef4b2205cb5e6d1eb0640625d5-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU5MTg5OTtBUzozMzAwNjA1NzkwMDAzMjJAMTQ1NTcwMzk4MjY2MQ==
https://www.researchgate.net/publication/254020854_A_CoAP-gateway_for_smart_homes?el=1_x_8&enrichId=rgreq-d4389bef4b2205cb5e6d1eb0640625d5-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU5MTg5OTtBUzozMzAwNjA1NzkwMDAzMjJAMTQ1NTcwMzk4MjY2MQ==

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

area in order to determine which ones implement a heater

switch service. This eliminates the need for an operator

having to explicitly introduce this information to the sensing

device. Several protocols such as Universal Plug and Play

(UPnP) [6], Service Location Protocol (SLP) [7], JINI [8], or

Salutation [9] have been proposed to enable service discovery

between wireless/wired networked devices. However, since

these protocols were not designed to be power efficient, they

introduce significant overhead when adopted for constrained

networks.

 Here the term constrained networks refers to wireless

networks composed of devices with limited power supply.

This energy source limitation translates into the introduction

of long inactivity periods (typically 99% of the time), reduced

memory and processing capabilities (typically devices have 8

or 16 bit micro-controller with only ~10KB for data and

~100KB for program memory), and support for small frame

sizes compared to the Internet infrastructure (typically 127

bytes as per IEEE 802.15.4 standard [Ref?] compared to 1280

bytes in IPv6).

In fact, in the context of constrained networks, the

following additional design requirements have to be

considered for service discovery protocols:

- Low overhead per control message and reduced number

of message exchanges in order to reduce energy

consumption and save communication bandwidth.

- Low memory and processing requirements so that the

discovery mechanism can run even in highly resource-

constrained nodes.

- Robust service provisioning to account for the high

dynamics of the wireless communication channel and

the unpredictable availability of battery powered

devices1.

- Interoperability with web applications and IP based

back-end networks so that these low power devices do

not operate in isolated “islands”.

Given the above design requirements, new mechanisms

should be developed to enable service discovery in

constrained networks. Along this line, recent advances in the

standards development at the network and application layers,

such as IPv6 over Low power Wireless Personal Area

Networks (6LoWPAN) [10] and Constrained Application

Protocol (CoAP) [11] are making IP/Web enabled constrained

networks a reality. CoAP, which is still work in progress of

the Internet Engineering Task Force (IETF) Constrained

RESTful Environments (CoRE) Working Group [12], is a

1
 Note that this requirement conflicts with the low overhead requirement as

changes in the network are likely to trigger more control message exchanges.

RESTful2 application layer protocol currently being designed

to offer resource efficient, simple M2M communications to

allow management and interaction among embedded devices.

One of the requirements for CoAP design is defining how to

use it to query or advertise a device’s description which may

include name, list of its resources, and so on (REQ8 as per

CoRE charter [13]). Thus, the IETF CoRE working group is

currently developing several resource discovery mechanisms

based on CoAP. In addition, other existing service discovery

mechanisms such as Domain Name System Service Discovery

(DNS-SD) [14] are also being considered by the IETF

community for the same purpose. Besides the CoRE IETF

efforts, non-IP based protocols such as Zigbee [15] and

simplified versions of IP-based protocols such as SLP [7]

have also been proposed for service discovery in constrained

networks. As detailed later, there are still several challenges

to overcome for service discovery within IP based low power

networks in terms of overhead, reliability and scalability,

among others.Surveys on service discovery protocols have

been published in the literature [1], [16], [17], [18]. However,

none of them focuses on constrained M2M communications.

This motivates our work.

 In this paper, we aim at providing a comprehensive review

of service discovery mechanisms for constrained networks

with a goal to provide a starting point of reference to gain

further insights into these protocols. As a general

introduction to the discovery concept, we first describe how

service discovery protocols operate, detailing on different

possible interactions common to all. Next we focus on those

protocols that are currently being proposed by the IETF

specifically for service discovery within constrained networks.

Such protocols include CoAP resource discovery [19], CoAP

Resource Directory (RD) [20] and DNS-SD, which can be

based on multicast DNS (mDNS) [21], extended multicast

DNS (xmDNS) [22] or unicast DNS. We then present a

detailed tutorial on the operation of these protocols and

underlying mechanisms, which are also evaluated in terms of

overhead, discovery functionality, interoperability, scalability,

reliability, robustness, required human interaction, and

suitability for group communications. For the sake of

completeness, a few additional service discovery protocols are

also reviewed, with a focus on constrained networks. Finally,

we describe some open source tools that may be used in

testing the reviewed protocols.

The rest of this paper is structured as follows. Section II

introduces the general concept of service discovery while

Section III proposes taxonomy of state-of-the-art approaches

for service discovery in constrained networks. Section IV

details the operation of the protocols currently being proposed

by the IETF for service discovery within constrained

networks. Section V discusses advantages and disadvantages

2
 REpresentational State Transfer (REST) is a software architecture style for

distributed systems such as the World Wide Web. It has emerged as a

predominant Web service design model.

https://www.researchgate.net/publication/220300000_A_Survey_of_Service_Discovery_Protocols_in_Multihop_Mobile_Ad_Hoc_Networks?el=1_x_8&enrichId=rgreq-d4389bef4b2205cb5e6d1eb0640625d5-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU5MTg5OTtBUzozMzAwNjA1NzkwMDAzMjJAMTQ1NTcwMzk4MjY2MQ==
https://www.researchgate.net/publication/255701136_Service_discovery_for_mobile_Ad_Hoc_networks_A_survey_of_issues_and_techniques?el=1_x_8&enrichId=rgreq-d4389bef4b2205cb5e6d1eb0640625d5-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU5MTg5OTtBUzozMzAwNjA1NzkwMDAzMjJAMTQ1NTcwMzk4MjY2MQ==
https://www.researchgate.net/publication/233731542_Standardized_Protocol_Stack_For_The_Internet_Of_Important_Things?el=1_x_8&enrichId=rgreq-d4389bef4b2205cb5e6d1eb0640625d5-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU5MTg5OTtBUzozMzAwNjA1NzkwMDAzMjJAMTQ1NTcwMzk4MjY2MQ==
https://www.researchgate.net/publication/238676729_IPv6_over_Low-Power_Wireless_Personal_Area_Networks_6LoWPANs_Overview_Assumptions_Problem_Statement_and_Goals?el=1_x_8&enrichId=rgreq-d4389bef4b2205cb5e6d1eb0640625d5-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU5MTg5OTtBUzozMzAwNjA1NzkwMDAzMjJAMTQ1NTcwMzk4MjY2MQ==
https://www.researchgate.net/publication/245965452_DNS-Based_Service_Discovery?el=1_x_8&enrichId=rgreq-d4389bef4b2205cb5e6d1eb0640625d5-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU5MTg5OTtBUzozMzAwNjA1NzkwMDAzMjJAMTQ1NTcwMzk4MjY2MQ==
https://www.researchgate.net/publication/288611338_Resource_and_Service_Discovery?el=1_x_8&enrichId=rgreq-d4389bef4b2205cb5e6d1eb0640625d5-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU5MTg5OTtBUzozMzAwNjA1NzkwMDAzMjJAMTQ1NTcwMzk4MjY2MQ==

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

of various approaches for different scenarios. Section VI

presents open source tools that may be used to test service

discovery protocols. It also discusses open issues and

challenges. Finally, Section VII concludes the paper along

with suggestions for future research directions.

II. SERVICE DISCOVERY PROTOCOLS: GENERAL CONCEPTS

There are two broad classes of service discovery protocols:

distributed and centralised. In a centralised approach, one or

more service directories contain lists of services offered by the

network devices which in turn use these directories as an

intermediary to discover services. On the other hand, in a

distributed approach, devices discover services by interacting

with each other directly without any intermediary directory.

The main functionalities for a service discovery protocol

during its lifecycle are publication, registration into the

directory (if available), discovery (in terms of browsing), and

the resolution. In addition, for those protocols based on a

directory, several maintenance functionalities may be

available to update, remove, and validate the entries. The

following subsections describe the main functionalities of a

service discovery protocol. Later these functionalities will be

instantiated for IP-based service discovery protocols currently

being considered by the IETF for low power (constrained)

M2M communication networks.

A. Publication

Publication is commonly used by service discovery

protocols that work in a distributed fashion, that is, whenever

a directory is not available. Publication is a process whereby

the devices announce/disseminate their own offered services.

A device may only publish a subset of its offered services

based on its requirements.

The Publication service commonly includes the following

information illustrated in Figure 1.

- Service type or class: this is to allow filtering of

services by search engines and clients depending on

their interest. For example, tempSensor is a service

type.

- Service access: this refers to mechanisms to access

services, such as addresses and ports in IP networks

(e.g., [2001::11]:5683), endpoints in ZigBee

networks, or object IDs in BACnet networks.

- Service name: it differentiates a particular service

from the allocated resource. For instance, if a

particular device offers two similar services, say

temperature sensors, each service should have a

specific instance name to allow differentiation.

Examples of service names are temp001, temp002.

- Domain name: the service domain and the device are

included in case they are not exactly the same. An

example domain for a building automation scenario

may be floor1.mybuilding.com.

- Service properties: it provides a fine grained

description of the type of service, the meta-data

required by the search engine, or any other service

related information given by the vendor. The service

properties can be a list of key-value pairs or

structured data such as XML. Examples of service

properties may be units=Celsius.

B. Registration

Service descriptions can be stored by a network entity

referred to as the directory. This directory keeps descriptions

of services announced within its own local domain (or

external domains for global directories). Registration is a

process whereby the descriptions of services offered by

network devices are stored (registered) into the directory to

make these descriptions available for discovery within the

respective domain.

floor1.mybuilding.com

[I
P

]:
P

o
rt

 =

[2
0

0
1

::
1

1
]:

5
6

8
3

Type: tempSensor

temp002
Units=Fahrenheit

temp001
Units=Celsius

Figure 1: Example of Information Published by a

Temperature Sensing Device

The establishment of the registration can be carried out

through stateless or stateful mechanisms. In the stateless

approach, the directory listens to service advertisements and

populates its service database. The directory may also poll

service descriptions directly from every device. Later on, the

directory may answer to future queries on behalf of the

original device (caching approach). On the other hand, in the

stateful mechanism, an explicit registration is carried out

directly from the device to the directory. In this case the

constrained device must know the directory location or use a

discovery mechanism such as a multicast request to find its

location.

For the stateless solution, every received publication

message can be utilized to collect service details, and

accordingly update the registration entry. Updating the entry

is required to keep the directory registrations coherent with

the network status. Freshness can be managed through a

lifetime value associated with every registered service such

that outdated registrations can be removed from the directory.

For the stateful solution, since registrations are performed

explicitly, additional protocol functionality needs to be

available to maintain the directory entries. Such additional

interfaces include:

- Directory Discovery: when the location of the

directory is unknown, some discovery scheme must

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

be available to locate it.

- Registration Update: a registration may be updated

to reflect the latest service description offered by a

service.

- Registration Validation: a directory may proactively

check whether any stored registration is still valid by

directly asking the server offering the service.

- Registration Removal: a device may unregister its

service description from the directory when it is no

longer available.

C. Discovery and Resolution

While the discovery refers to browsing a domain

(neighborhood) to locate instances of some relevant service,

the resolution relates to translating the discovered service

instance to an accessible end-point address or host name.

Note that even if some advertisement mechanism has been

previously used, a network device may have to utilize the

discovery when it has not overheard the required service

advertisement. Browsing can be performed directly on the

neighborhood, or on a centralized local directory, or at a

global scale on a global directory.

Moreover, browsing can be general (all the services), or it

can target a specific set of services (based on its type, domain,

location, etc.). Depending on the granularity of the service

descriptions and the service discovery protocol, a query may

produce more or less specific answers. In practice, this means

that the resolution phase may or may not be required (see

Section IV for more details). Finally, a search engine can be

utilized together with the discovery mechanism, in order to

filter all the available services and resources that are of

relevance to the clients.

III. SERVICE DISCOVERY PROTOCOLS FOR LOW POWER

NETWORKS

As already mentioned, the goal of service discovery

protocols is to allow services and devices in the network to

automatically become aware of each other without the need

for human intervention3. Service discovery protocols may be

broadly characterized by transport, complexity, topology and

scope. Based on these characteristics, Figure 2 classifies the

discovery protocols surveyed in this section. First, we describe

service discovery protocols for traditional or non-constrained

networks, in an effort to provide the readers a historical view

of existing service discovery protocols and why they are not

suited for constrained networks. Later, the survey focuses on

service discovery protocols for traditional low power networks

in which specifically developed protocols are used between

constrained nodes, and gateways are required for protocol

translations and where the focus is not to expose device

functionality to the outer world. Finally, we review IP based

protocols where remote direct end-to-end communications are

enabled, thus facilitating a new range of applications where

devices are not isolated any more but reachable by any other

machine in the Internet.

The transport mechanism used by a discovery protocol

usually depends on the application requirements. Most

discovery protocols simply operate on top of the traditional IP

layer using TCP or UDP as the transport protocol whereas

others, such as Zigbee’s discovery protocol, are intended for

non-IP networks with specific resource constraints.

The complexity of a discovery protocol may be

characterized by the power, computation and connectivity

requirements of the protocol when searching for services and

matching client queries. In order to keep the complexity low,

search mechanisms must optimize the packet overhead

incurred when querying for services. Moreover, query parsing

should not require high power computation or memory

resources. Some engines only allow searching on the basis of

service type whereas others support more fine-grained search

using complex queries. In the constrained networks, there

must be a compromise between the query expression

complexity and the computation overhead when designing

search and query matching techniques.

3
 The term service used until Section IV generally refers to some functionality

offered by a device, such as a printing or sensing service In Section IV onward,

service will be technically defined for different protocols under consideration.

Figure 2: Taxonomy of Service Discovery Protocols

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

Additionally, the scope of the discovery protocol

characterizes the set of resources that are discoverable by a

given client. In the IP-based systems, the scope is usually

limited to the resources discoverable within a subnet using

multicast but it may as well be limited to the transmission

range, for example in wireless personal area networks

(WPANs) or infra-red systems. The scope also depends on the

topology employed by the discovery system. Some systems

may use one or more directories to manage resource

registrations and client queries, whereas others may use a

pure peer-to-peer or hybrid topology for service discovery.

Therefore, large scopes may be achieved by using topologies

that interlink multiple local directories.

A. Discovery Protocols for Traditional Networks

The choice of a discovery protocol depends on the intended

applications. A wide range of discovery technologies are in

use today for different purposes, the most popular ones being

UPnP and Bonjour [23]. The UPnP stack, based on the simple

service discovery protocol (SSDP) [24], is used by vendors

such as Microsoft, Intel, Sony and Samsung in residential and

office environments for discovering computers and digital

entertainment appliances. SSDP uses HTTP notification

announcements to discover services which are identified by a

Uniform Resource Identifier (URI) and Unique Service Name

(USN) containing resource type, and a URL pointing to the

service description in XML. Because HTTP and XML are too

expensive due to large overhead, UPnP is not well suited for

service discovery in low power networks.

On the other hand, Bonjour is Apple’s implementation of

the IETF Zeroconf protocol mainly used in offices for the

discovery of printers, computers and services. Bonjour

discovery technology leverages the current Internet

infrastructure through the combination of mDNS [21] with

DNS-SD [14]. The low complexity of mDNS makes it a

suitable candidate for low power networks and therefore it is

currently being considered for service discovery in

constrained networks by the IETF. The details of DNS-SD are

explained in Section IV.

Although not as commonly used as UPnP and Bonjour, the

Service Location Protocol (SLP) [3] is still supported by

companies such as Hewllet-Packard, Novell and Oracle

Solaris in their products to allow networking applications

discover resources such as printers, fax machines and

cameras. The SLP services are defined using URLs, and

clients publish their existence through multicast service

registration messages containing the service type, URL and

attributes. In response, the clients reply with the URLs of

matching services and their valid lifetime. In addition to

direct discovery through multicasting, SLP supports the use of

discovery agents (DA) which store service registration

messages into a local data base. The main difference between

SLP, UPnP and Bonjour is that SLP permits the use of

complex search queries (based on the Lightweight Directory

Access Protocol, or LDAPv3) which reflects its orientation

towards enterprise service discovery. The drawback of these

complex queries is high overhead per request which is

unsuitable for low power networks.

In addition to the above most popular IP-based service

discovery protocols, there also exist other protocols, like

Universal Description, Discovery and Integration (UDDI)

[25] for web services, Jini for Java objects, and Salutation [5].

However, these protocols are not suitable for constrained

networks considered in this paper. In particular, UDDI is

based on an XML message format which requires high

processing power for data parsing. Jini and Salutation are

based on remote service invocation methods in which the

clients remotely invoke services through their available

interfaces. This requires java remote method invocation or

remote procedure calls (RPC) which are currently infeasible

in constrained networks.

B. Discovery Protocols for Constrained Networks

As mentioned above, most of the discovery protocols for

wired, powered or high-bandwidth wireless networks are not

suitable for constrained networks. In order to meet the design

requirements (see Section I), the general goal for M2M

discovery protocols for constrained networks is that they must

be resource efficient in terms of low processing and memory

overhead, as well as must minimize the number and size of

message exchanges.

Along this line, non-IP standard protocol specifications for

wireless low power networks have defined their own resource

aware discovery mechanisms. However, with increasing

demand for IP connectivity down to the constrained devices,

new service discovery protocols for constrained networks are

being proposed based on the IP transport. Next, we detail both

non-IP and IP based service discovery trends for constrained

M2M communications.

Non-IP Based Service Discovery for Constrained M2M

Communications

Over the last decade several wireless protocol specifications

for constrained devices have defined their own mechanisms to

facilitate device and service discovery. For instance, KNX-RF

[26], Z-Wave [27] and EnOcean [28] are some of the well-

known examples in home and building automation arenas.

Although such communication protocols have recently gained

attention due to their resource aware design, their discovery

capabilities are very limited. This is because they usually

depend on an operator performing some manual

configurations, e.g. creating tables for binding devices or

pushing buttons for device configurations.

The Bluetooth Service Discovery Protocol (SDP) [29] is

another wireless low power protocol, but mainly used in

mobile ad-hoc environments such as between a mobile phone

and headsets or car stereo systems. Bluetooth device discovery

is performed by periodically broadcasting and scanning for

inquiries. Once the device address is known, the connection is

https://www.researchgate.net/publication/245965452_DNS-Based_Service_Discovery?el=1_x_8&enrichId=rgreq-d4389bef4b2205cb5e6d1eb0640625d5-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU5MTg5OTtBUzozMzAwNjA1NzkwMDAzMjJAMTQ1NTcwMzk4MjY2MQ==
https://www.researchgate.net/publication/3437159_Discovery_Systems_in_Ubiquitous_Computing?el=1_x_8&enrichId=rgreq-d4389bef4b2205cb5e6d1eb0640625d5-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU5MTg5OTtBUzozMzAwNjA1NzkwMDAzMjJAMTQ1NTcwMzk4MjY2MQ==
https://www.researchgate.net/publication/254020854_A_CoAP-gateway_for_smart_homes?el=1_x_8&enrichId=rgreq-d4389bef4b2205cb5e6d1eb0640625d5-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU5MTg5OTtBUzozMzAwNjA1NzkwMDAzMjJAMTQ1NTcwMzk4MjY2MQ==
https://www.researchgate.net/publication/247523569_Simple_Service_Discovery_Protocol10_Operating_without_on_Arbiter?el=1_x_8&enrichId=rgreq-d4389bef4b2205cb5e6d1eb0640625d5-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU5MTg5OTtBUzozMzAwNjA1NzkwMDAzMjJAMTQ1NTcwMzk4MjY2MQ==

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

established through pairing and only then the information

about services available on devices is provided. Even though

the latest Bluetooth specification (BLE or version 4.0)

achieves low energy consumption and high pairing speed,

SDP only works for Bluetooth devices which make it

unsuitable for other types of low power devices.

Finally, the Zigbee device discovery provides the facility

for devices to find node-wide (not application/endpoint

specific) information about other devices in a network, such

as addresses, manufacturer ID, types of applications running,

power source, and sleep behavior. The device discovery is

mostly used to learn about device capabilities, in particular

for cases where a manufacturer implements extended ZigBee

commands. In addition to the device related services, the

Zigbee Device Profile (ZDP) also contains a variety of

standard mechanisms, called ZDP service discovery, to

identify the applications and their properties running on the

devices. Service discovery is performed mainly during device

configuration and integration into a ZigBee network by

requesting a so-called simple descriptor from other devices of

interest which describes everything to know about the

endpoint: the Application Profile ID, supported input and

output clusters.

Utilizing non-IP protocols as the transport mechanism has

the drawback that service discovery is limited to the low

power network domain. However, M2M systems require IP

interoperability to discover services hosted on a back-end

server network such as the Internet or among low power

networks using different radio technologies. To enable low

power networks based on the proprietary protocols to discover

services in IP based network infrastructures, a gateway is

required to convert the proprietary protocol used within the

low power network to the protocols used in the TCP/IP

domain. These gateways introduce single points of failure and

usually depend on humans for static registration and

management of resources.

For instance, it is possible in Zigbee to expose services

provided by the sensor devices to an IP based network via a

ZigBee IP Gateway [30] but it requires human intervention.

The gateway configuration is accomplished by a two-phase

process if the services provided by ZigBee devices are

exposed via a REST interface. In the first phase, the ZigBee

gateway needs to associate an endpoint with a local service

descriptor provided by a user. In the second phase, the

gateway needs to associate the response URI with the

previously configured endpoint. As a result, messages sent to

this endpoint by ZigBee devices will be forwarded to the

specified URI. Once this procedure is finished, an application

can send a REST request to the gateway with a URI including

the ID of the preconfigured endpoint. The ZigBee network

can respond to this request by sending a response to the same

endpoint on the gateway. The described mechanism lacks

flexibility as it requires human intervention to configure it.

Moreover, there is no standard procedure to inform new IP

applications about exposed ZigBee services in the gateway.

Therefore, the service discovery mechanism is only limited to

the ZigBee domain, and the exposed ZigBee services on the

gateway can only be used by the application that configured

the gateway accordingly.

IP Based Service Discovery for Constrained M2M

Communications

As more and more M2M applications require the

interconnection of low power networks to the Internet, both

the research and industry communities have designed diverse

IP based service discovery protocols for constrained networks.

As early as 2005, Sensinode Ltd. [31] started developing a

nano-IP stack including a reduced version of HTTP and a

directory-less version of SLP that uses WAP Binary XML

(WBXML) compression mechanisms for reduced parsing

complexity. However, the nanoSLP protocol does not support

the use of multicast and has very limited search capabilities.

In the same year, the Simple Service Location Protocol

(SSLP) for 6LoWPAN [32] also started its standardization in

the IETF Networking Group. SSLP uses Tokenized XML

strings to minimize packet exchanges, and adds support for

translation agents (TA) to the standard SLP framework. The

TAs run on gateways to perform the translation between SLP

messages in an IP network and SSLP messages in a

6LoWPAN network. However, this solution involves

complexity and incurs delay in translation, each time a

message is translated to or from the SLP.

On the other hand, human readable names are not

necessarily required for M2M communications. For this

reason, nanoSD [33] proposes the mapping of XML service

descriptions from nanoSLP into attribute-value pairs using a

defined mapping tree structure in the gateway. The content of

the tree-based database may be dynamic so as to download

new service description templates from the Internet. The use

of attribute-value pairs proposed by nanoSD decreases the

parsing complexity and packet overhead in the low power

network. However, nanoSD performs multicast and broadcast

extensively, and requires each node to keep the service

information of its neighbors. Moreover, the tree mapping

approach proposed at the gateway introduces single points of

failure. Similarly, the ITU-T E.164 NUmber Mapping

(ENUM [30] based service discovery protocol uses a mapping

to reduce the packet overhead in DNS. Clients make queries

based on human readable strings and the proposed service

discovery procedure converts these into integers following a

similar approach to the ENUM telephony standard [35].

More recently, the IETF working group for Constrained

RESTful Environments (CoRE) has started designing

resource aware service discovery protocols based on CoAP as

well as proposing the use of existing Internet protocols such

as DNS-SD for the same purpose. These protocols, intended

to become a standard, have the advantage of being light

weight and IP based, which guarantees power efficient

operation and interoperability. Moreover, they are based on

widely accepted technologies such as REST (CoAP) or DNS

which guarantees easy adoption. Therefore, these protocols

have recently gained significant attention.

Although other standards for low power wireless networks,

such as ZigBee, have their own application layer protocols

https://www.researchgate.net/publication/220963516_NanoSD_A_Flexible_Service_Discovery_Protocol_for_Dynamic_and_Heterogeneous_Wireless_Sensor_Networks?el=1_x_8&enrichId=rgreq-d4389bef4b2205cb5e6d1eb0640625d5-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU5MTg5OTtBUzozMzAwNjA1NzkwMDAzMjJAMTQ1NTcwMzk4MjY2MQ==

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

and service discovery mechanisms, their current objective is

to move towards IP at the end device for increased

compatibility and integration with other systems [36]. This is

also the case for standards in the building automation

domain, for example BACnet [37]. It can therefore be

expected that these standards may eventually adopt CoAP or

DNS based service discovery protocols.

Given the current trend towards IP based service discovery

protocols for constrained networks, the next sections describe

in details these protocols and analyze their performance,

advantages and disadvantages.

IV. COAP AND DNS SERVICE DISCOVERY

CoAP and DNS-SD mechanisms are currently being

considered by the Internet community for service discovery in

constrained M2M networks. If DNS-SD is utilized for service

discovery, it is considered as a complementary protocol to

CoAP. One of the reasons behind considering DNS for

service discovery is that it would incur only limited overhead

as far as memory resources are concerned. This is due to the

fact that CoAP defines URI schemes for identifying or

locating CoAP resources, where the CoAP URI scheme has

the format: “coap:” “//” host [“:”port] path-abempty ["?"

query]. The host part can either be an IP address or a

registered name. If the host is a registered name, then a name

resolution service such as DNS is required to obtain the

device address. Note however that the overhead of CoAP and

DNS frames is different and a human readable name would

not necessarily be required for M2M communications.

 So far we have used the popular expression service

discovery as a general term to refer to the discovery of

functionality offered by a device. Nevertheless, in the context

of IP based constrained networks, the discovery of

functionality can be decoupled into two technically

distinguishable parts: service and resource discovery [38].

For completeness, the definitions of service and resource for

CoAP and DNS protocols are given below.

When utilizing CoAP, a service is defined by the tuple

{protocol, host, port}, that is, a service represents the entry

point of a CoAP server, e.g. coap://[2001::11]:5683. In

addition, a resource in CoAP is any feature of an end-point

that allows REST based interactions, that is, it can be acted

upon with CoAP methods and identified by a URI. For

example, a CoAP resource may be expressed as

coap://[2001::11]:5683/sensor/tempC. Moreover, CoAP

resources are generally categorized by resource type (rt)

attributes, e.g., rt=tempC. CoAP services (end-points) and

resources are discovered with CoAP resource discovery

methods as detailed in subsection IV.A. On the other hand, a

service in a constrained network utilizing DNS-SD is defined

by the tuple {service subtype, type (protocol)}, e.g.,

_tempC._sub._coap._udp. The types and subtypes are usually

defined by a Standards Development Organization (SDO).

The service definition together with the domain, e.g.,

_tempC._sub._coap._udp.example.com, is utilized to discover

instances of the services, e.g.,

1234Sensor._tempC._sub._coap._udp.example.com. The

DNS Service instances can later be resolved to end-points

(CoAP services) and URIs representing CoAP resources as

detailed in subsection IV.B. Figure 3 summarizes these

concepts.

A. CoAP Based Resource Discovery

CoAP is a RESTful Web transfer protocol currently under

development for M2M communications in constrained

networks. The CoAP specification defines a client/server

model similar to HTTP where a CoAP end-point can typically

act as both the server and client. Since CoAP is for

constrained networks, it introduces low header overhead and

reduced parsing complexity. Additional features include: (i)

unicast and multicast support; (ii) acknowledged and

unacknowledged transactions; (iii) four different request

methods similar to those of HTTP: GET (retrieve resource

representation), POST (process request), PUT (update/create

resource) and DELETE (delete resource); (iv) and three types

of response codes: 2.xx (success), 4.xx (client error), 5.xx

(server error).

CLIENT SERVER

Discover resource with rt=tempC

coap://[2001::12]:5683/sensor/tempC

GET coap://[2001::12]:5683/sensor/
tempC

Content: 22 C

CLIENT SERVER

Discover DNS service instance name of
type and domain

_tempC._sub._coap._udp.example.com

1234Sensor._tempC._sub._coap._u
dp.example.com

Host=tempC12.example.com,
Port=5683

Discover CoAP Service (end-point)
with DNS service instance name

1234Sensor._tempC._sub._coap._ud
p.example.com

Path=/sensor/tempC

Discover CoAP Resource with DNS
service instance name

1234Sensor._tempC._sub._coap._ud
p.example.com

GET coap://tempC12.example.com/
sensor/tempC

Content: 22 C

DISCOVERY OF CoAP RESOURCES WITH
CoAP RESOURCE DISCOVERY

DISCOVERY OF CoAP RESOURCES WITH
DNS SERVICE DISCOVERY

CoAP Service Resource DNS Service Instance Name

Figure 3: Definitions and High Level Usage Examples of

Service and Resource Discovery Concepts for CoAP and

DNS protocols.

With regard to resource discovery, two main mechanisms

based on CoAP have been proposed: CoAP resource discovery

and CoAP Resource Directory (RD). The main objective of

these mechanisms is to supply URIs, also known as links, for

the resources available within the server, together with

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

attributes that describe those resources, and any possible link

relation [19]. CoAP resource discovery is a distributed

approach where a device discovers resources offered by

another device by performing a direct query. In contrast, with

CoAP RD, all resource discovery queries are performed on a

centralized directory entity.

1) Distributed CoAP Resource Discovery

This is the basic method that may be utilized by a CoAP

device to discover resources hosted by another device without

the need for a directory. When a client device, for instance a

light controller, needs to obtain the resources hosted by a

server, such as a smart lamp, the server must issue a GET

request to the well-known URI /.well-known/core of the server

as illustrated in Figure 4(a). If this request is a unicast

because the target server address is known, then only the

target server will respond with the URI of all its discoverable

resources in the CoRE Link Format [19]. However, sending a

multicast discovery request is also possible within a limited

scope, if IP multicast is supported within the network, in

order to discover the end-points (CoAP services) and their

offered resources with a single query to the well-known URI.

Smart
switch

(a)

(b)GET /.well-known/core?rt=switch

Sensor

GET /.well-known/core

 2.05 Content: “</temp...>”

 2.05 Content: “</myswitch>”

GET /.well-known/
core?rt=switch&d=mybuilding.com

 2.05 Content: “</myswitch>”
(c)

Figure 4: Distributed Resource Discovery

Clients can also query for specific types of CoAP resources.

This is achieved by utilizing a query string in the request

method consisting of search parameters listed as

parameter=value pairs. For instance, if a sensor requires to

obtain only those resources of the type switch, a query string

such as the one shown in Figure 4(b) could be used, where the

parameter rt denotes the resource type. Moreover, several

parameters can be used together in a query as shown in

Figure 4(c), where a device looks for the resource descriptors

corresponding to type switch within the mybuilding.com

domain (denoted by parameter d). Additional link attributes

that may be used to perform detailed queries include the

interface description if, which relates types of resources to

CoAP methods they accept [39], and the maximum expected

size sz of a resource. Note that any server can decide which of

its available resources to be discovered.

This distributed discovery method has the advantage that

the queries are performed directly from the client to the server

without requiring an intermediate directory. However, for

this, a client needs to know the IP address or host name of the

server that is queried, which means that either an external

application would need to provide IP address/hostname or it

would need to be hard-coded into the device’s firmware.

When the IP address or host name is not available, another

possibility is to issue a multicast request. However, a

multicast request is not reliable, i.e., the client does not have

the means of knowing that the request has reached all

intended destinations, and thus the client may not obtain the

required information. Finally, if the IP address or host name

is unknown, the client may issue a discovery request for each

neighbor whose addresse may be obtained from the network

layer, for instance, thereby obtaining their hosted resources

in a reliable manner. However, serial unicast is not the most

desirable method for a resource constrained network where

communication must be kept to a minimum in order to

preserve energy.

2) Centralized CoAP Resource Discovery

The CoRE working group proposes the use of a Resource

Directory (RD) entity within LoWPAN to enable resource

discovery [20]. Similar to any directory, the goal of an RD is

to store descriptions of resources held by the servers (e.g.

sensors, actuators) within the LoWPAN, and allow clients

(e.g. other sensors, building management applications, etc.)

to perform lookups on those resources. With this approach,

all resources offered by the servers are registered

automatically by them in this single centralized resource

directory entity so that clients can discover any required

resource with a single request. In order to use the RD either

for registration or for performing a lookup, the device must

first know how to reach the RD, i.e., its address. The end-

point can locate the RD by a number of means: (i) assuming a

default location such as the Border Router of the LoWPAN

whose address is known by router advertisements; (ii) with

the help of anycast address that may be assigned to the RDs;

(iii) or by discovering the RD using the CoRE Link Format

resource discovery as described in the last subsection is

illustrated in Figure 5.

Occupancy
Sensor

CoAP
Resource Directory

GET /.well-known/core?rt=core.rd*

POST /rd “</occ…”

 2.05 Content: “</rd>”

Created location: /rd/12

Figure 5: CoAP RD Registration Process

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

Once the RD is successfully discovered, a server can

register its resources within the RD by performing a POST

request to the path indicated by the RD in its response to the

discovery request (i.e., /rd). If the registration is successful,

the RD returns the path to the end-point where its resources

are located (i.e., /rd/12). The RD may also proactively

discover the resources of the different servers using the

resource discovery method described in the next subsection.

Whenever a directory is used, additional protocol features

must be available to manage the directory entries. For CoAP

RD, the following interfaces are currently defined:

- Update: servers may update their registration if

necessary, using the location path returned by the

RD after registration and performing a PUT as

illustrated in Figure 6(a).

- Validation: the RD may proactively check if any

registration is valid by querying the end-point.

Figure 6(b) shows the validation process where the

Etag option represents the freshness or version of the

resource being validated. If the Etag does not match

the current representation, the most recent

representation is sent to the RD enclosed in a

successful CoAP 2.05 Content response.

- Removal: registrations can be deleted by the end-

points at any time by issuing a DELETE request to

the registration path as depicted in Figure 6(c). The

RD may also proceed to delete a registration when

detecting that the life time of the registration has

expired (where the life time of the resource is

indicated by the end-point upon registration).

-

Once devices have registered their resources with the RD,

they can start browsing the RD database to find any required

resource. When a client wants to perform a lookup in the RD

to find out which servers implement a certain resource, it has

to issue a GET request to the RD. For this, the client utilizes a

specific query to only obtain those results that match the

client’s interest. As an example, in Figure 7(a), a sensor

device queries the RD to return those registered resources

(i.e., lookup type res) whose resource type is switch (e.g.

?rt=switch). In order to issue the query, the location of the

directory should be known and obtained following the process

as described in Figure 5. Because a query to the RD directly

returns a CoAP resource, no resolution is necessary, that is,

the requesting device can start interacting with the discovered

resource immediately. Note that this applies to the distributed

CoAP discovery method as well. Finally, with the help of

CoAP RD, the CoAP services (end-points) or domains can

also be discovered with the lookup types ep (end point) or d

(domain) respectively (note that this is only defined for the

directory based lookups and not available for the distributed

resource discovery). Figure 7(b) shows how a sensor

discovers the end-point (lookup type ep) that hosts a switch

resource.

Occupancy
Sensor

CoAP
Resource Directory

PUT /rd/12 “</occ…”

DELETE /rd/12

 2.04 Changed

2.02 Deleted

(a)

(b)
GET /.well-known/core Etag: 0x20

2.03 Valid

(c)

Figure 6: CoAP RD Entry Maintenance Interfaces

Sensor

CoAP Resource Directory

GET /rd/res?rt=switch

 2.05 Content: “<coap://[2001::12]:
5683/myswitch>”

 2.05 Content: “<coap://
[2001::12]:5683>”

GET /rd/ep?rt=switch

(a)

(b)

Figure 7: Sensor Node Performing CoAP RD Lookup

B. DNS Based Service Discovery

Domain Name System Service Discovery (DNS-SD) is a

mechanism whereby standard DNS programming interfaces,

packet formats, and servers can be employed to browse the

network for services [14]. DNS-SD defines how to name and

arrange the DNS records, namely pointer (PTR), service

locator (SRV), IPv6 address (AAAA) and text (TXT), with

the purpose of facilitating the service discovery within a

subdomain. DNS-SD does not alter the structure of DNS

messages, operation codes, record types or any other DNS

protocol values.

Broadly speaking, a DNS-SD server contains a list of

services that are defined in accordance with a Service

Instance Name having format:

<Instance>.<ServiceType>.<Domain>. For the specific case

of LoWPANs for building automation applications, for

example, it is suggested that the <Domain> part of the

service definition should contain some location information

(e.g. room1.building2.example.com) [38]. The

<ServiceType> part (e.g., light._sub._coap._udp) follows

some conventions that must be pre-established by Standard

Development Organizations (SDO), such as the Organization

https://www.researchgate.net/publication/245965452_DNS-Based_Service_Discovery?el=1_x_8&enrichId=rgreq-d4389bef4b2205cb5e6d1eb0640625d5-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU5MTg5OTtBUzozMzAwNjA1NzkwMDAzMjJAMTQ1NTcwMzk4MjY2MQ==

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

10

for the Advancement of Structured Information Standards

(OASIS) or IP for Smart Objects (IPSO) Alliance, which

basically identifies an application protocol (service) and other

additional functionality (service subtypes). Finally, the

<Instance> part, e.g., light1234, identifies a specific instance

of the service. This can be configured by the network

operator/user, although a properly established default instance

may allow the device or service to be accessed without

requiring any manual configuration.

In order to relate services with instances, and instances

with end-points that offer services, specific records are

defined. Conceptually, a record can be viewed as a mapping

between two parameters (e.g., service instance to IP address).

More specifically, the records contain the following

information:

- PTR record: maps <ServiceType>.<Domain> to a

service instance name of that service

<Instance>.<ServiceType>.<Domain>.

- SRV record: maps a service instance name to the

service URI. This provides the basic description of a

service in terms of hostname, port, priority, weight

and lifetime or time to live (TTL).

- AAAA record: maps a service instance name to the

IPv6 address.

- TXT record: maps a service instance name to

different resources and attributes of a service, i.e.,

gives detailed information of a service by mapping

the service instance to key=value pairs (e.g.

path=/temp, if=BACnet, etc.) such as service types,

location, interfaces, etc.

A high level overview of the DNS service discovery process

was illustrated in Figure 3. As shown there, the client would

query for the PTR record in order to obtain the service

instance name; for obtaining host and port information the

client would query for the SRV record; and finally, in order to

obtain the CoAP resource, the client would query for the TXT

record which contains the path to the resource.

Finally, there are three ways of performing DNS-SD:

unicast, multicast and extended multicast. The main

difference lies in the manner in which they perform the

discovery. With unicast DNS-SD, a central server containing

service descriptions is queried. With multicast DNS (mDNS)

[21] or extended multicast DNS (xmDNS) [22], no central

server is available, which means that queries have to be

multicast locally or within the site’s local scope, respectively,

to discover the required information.

1) Distributed DNS Service Discovery: mDNS

Multicast DNS (mDNS) extends the current DNS

specification to networks without infrastructure, where the

devices query their neighborhood (local domain) through

multicast instead of querying a DNS server through unicast.

The mDNS adds to the DNS specification a .local domain, a

well-known port and address for the multicast, and defines

how to manage multiple answers to a single query.

In the distributed DNS based service discovery, the devices

are able to publish information about the services and

resources they offer using mDNS advertisements, which have

the same format as standard DNS queries but are sent to the

IPv6 multicast address FF02::FB. These advertisements may

include service types and name (PTR records) with the

domain name (local in case of mDNS, or any other in case of

a global domain), the host name and port (SRV record), the

address (AAAA record), and finally the extended description

of the device (TXT records).

Assuming a building automation control scenario as in the

previous section, a smart light would publish its services by

including in its mDNS advertisements the PTR, SRV and

TXT records defined in Tables 1 and 2. In this example, the

PTR record defines the mapping from a service instance

name, e.g., BULB1_bc._bulb._sub._coap._udp.testbed.local

(abbreviated in the tables as BULB1_bc for simplicity) to a

<ServiceType>.<Domain> tuple denoted as

_light._sub._coap._udp.testbed.local. The service type here

defines the protocol used (e.g., CoAP/UDP) and the subtype is

the resource to be accessed, e.g. light. Multiple PTRs can be

defined for the same service to enable different query formats

(see Table 1).

Table 1: PTR Records Example

_bulb._sub._coap._udp.testbed.local PTR BULB1_bc

_coap._udp.testbed.local PTR BULB1_bc

The SRV records for the same service instance BULB1_bc

describe how to access the service (see Table 2). This includes

the hostname URI (e.g., light1.testbed.local), the port (e.g.,

5683), the priority (where zero indicates maximum priority),

and relative weight for records with the same priority. TXT

records are always defined in conjunction with SRV in order

to provide additional description of the service. In this

scenario, the TXT record provides the path to access the

resources that activate the light (path=/lt/2/on) and the

resource type (rt=ipso.lt.on).

Table 2: SRV and TXT Records Example

BULB1_bc IN SRV 0 0 5683 light1.testbed.local

 IN TXT path=/lt/1/on

 IN TXT rt=ipso.lt.on

Once an interested client such as a smart switch has all the

information contained in the records, it will simply use the

obtained information to access the light resource.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

11

Smart
switch

(a)

(b)

Smart
lamp

Q _light._sub._coap._udp PTR

QR ligth1.testbed.local

Q _BULB1_bc SVR

QR BULB1_bc

QR path=/lt/1/on rt=ipso.lt.on

Q _BULB1_bc TXT

Content: 0

GET coap://light1.testbed.local/lt/1/on

(c)

(d)

Figure 8: mDNS Browsing Example

The distributed DNS service discovery also allows the

browsing of services hosted in other servers by means of

sending standard DNS queries to the multicast address. This

would allow the smart switch from our example to look for

any lights in its local neighborhood (see Figure 8, where Q

indicates Query and QR indicates Query Response). In this

case, the DNS query would only include the PTR record with

the service specific type that the switch wants to find, for

example, _light._sub._coap._udp. Any device that matches

the requested service, in this case a light using the CoAP

protocol, will reply to the smart switch with the PTR record

pointing to a service instance (e.g., BULB1_bc) shown in

Figure 8 (a).

After receiving the instances that match the switch’s

interest, it has to resolve those to URIs that may be acted

upon. For this, the switch asks for further records for those

instances (SRV and TXT) which will provide IP address,

port, path, and other relevant information as illustrated in

Figure 8(b) and 8(c). Finally, the client device can use the

obtained information to interact with the discovered

functionality, in this case CoAP resources as shown in Figure

8(d).

2) Centralized DNS Service Discovery: DNS-SD

In the centralized DNS service discovery, a DNS-SD server

is assumed to be available within the network infrastructure.

The DNS-SD server stores service descriptions from devices

in its subdomain. Similar to CoAP RD, the devices start by

registering their services in the DNS-SD. However, in this

case there is no standard DNS registration message. The most

common implementation of the registration message, for

instance such as performed with Bonjour, is to reuse the

mDNS publication message to register service descriptions in

the DNS-SD. This message may be sent by multicast

following the same process described earlier, or may be sent

directly to the unicast address of the DNS server if the

address is known. Alternatively, the device may discover the

DNS-SD server address through browsing the well-known

service type _b._dns-sd._udp.local. Finally, when the DNS-

SD server is in a different subnet, a different process, referred

to as the global DNS-SD, must be used.

Currently no method is available with global DNS-SD to

discover the address of a remote server location automatically.

Thus, assuming that the DNS-SD server address is already

known, for instance through IPv6 router advertisements, the

smart lamp would register its service through a unicast

publication message sent to the global DNS server. Since the

remote DNS-SD server is not in the same subnet as the light,

the server will not be able to observe the evolution of services

and resources within that network, e.g., if the light is no

longer reachable due to loss of connectivity. To solve this

problem, the IETF has defined a synchronization mechanism

referred to as dynamic DNS updates [40]. The Dynamic DNS

updates utilize a parameter called lease life-time in the DNS-

SD server records that is updated every t minutes (t = 30min

is the suggested value). If the resource is not updated within

this time frame, it will be removed from the DNS-SD register.

Additionally, the IETF also defines DNS long-lived queries to

allow the clients to observe any changes in the service

registrations [41].

Finally, the DNS-SD can register all services automatically

under the well-known service pointer _services._dns-

sd._udp._local. This allows browsing all services registered

in a directory, similar to the /.well-known/core interface of

CoAP.

Once the registration process ends, any device will be able

to look up services through DNS queries to the DNS-SD

server. The only difference with respect to the distributed case

is that a single response from the DNS-SD server includes all

the registered services in the network that match the

requested type. After receiving the service instances, the

resolution process must be carried out through the global

DNS-SD server.

V. COAP AND DNS SERVICE DISCOVERY: EVALUATION

This section evaluates CoAP and DNS based service

discovery protocols in terms of several performance metrics:

overhead, discovery functionality, interoperability, scalability,

reliability, robustness, required human interaction and

suitability for group communications which are presented

below,

A. Overhead

Here we describe in detail a set of experiments that have

been performed in order to analyze the overhead introduced

by DNS and CoAP based service discovery protocols. The

results include only the overhead introduced by CoAP and

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

12

DNS protocols, not considering UDP and IPv6 headers. For

these experiments we utilized the simple scenario shown in

Figure 9.

Figure 9: Experimental Network Setup

1) CoAP Ovehead Analysis

Figure 10 shows the overhead for the distributed and

centralized CoAP resource discovery mechanisms for a star

network scenario with two CoAP servers and one CoAP client

as shown in Figure 9. For this evaluation, both servers

implement a light service with path=/lt/1/on and resource

type rt=ipso.lt.on. As observed from Figure 10, for the

centralized case, the devices must discover and register their

resources with the RD following the process described in

Section IV.A (RD Discovery and RD Registration as per

Figure 10). Since each device must discover and register with

the RD in an independent manner, the overhead is directly

proportional to the number of devices. The RD discovery

process seems quite inefficient for a large number of devices,

since the same RD discovery information has to be

transmitted independently multiple times. The lookup

overhead is also shown for the centralized case (RD Lookup

as per Figure 10). As shown, the bulk of the overhead in this

phase is associated with the response. This is because the RD

must send the complete path to the requested resources for

each registered device, for example

<coap://[2001::10]:5683/lt/1/on>;rt=ipso.lt.on,

<coap://[2001::11]:5683/lt/1/on>;rt=ipso.lt.on. Much of the

information present in the URI could be omitted since only

the address changes (e.g. from 2001::10 to 2001::11);

however the complete URI is sent by the RD. Thus, it would

be interesting to investigate how this redundant overhead

could be reduced.

On the other hand, for the case of distributed discovery, the

nodes do not carry out the RD discovery and registration

phases. Only the lookup is performed by an unreliable

multicast (which in this case succeeds for all servers), or

separate reliable serial unicasts (Multicast Lookup and

Unicast Lookup as per Figure 10). In general, it can be seen

that the distributed mechanism outperforms the centralized

mechanism in terms of overhead as the RD discovery and

registration phases do not have to be performed. Moreover,

the distributed lookup is less expensive in terms of overhead

since only the path to the resources is transmitted instead of

the complete URI, e.g., </lt/1/on>;rt=”ipso.lt.on”, as the IP

address is inferred from the packet source address.

Figure 10: CoAP Based Service Discovery Overhead

(2 Servers, 1 Client Star Network)

Occupancy
Sensor

CoAP RD

GET /.well-known/core?rt=core.rd*

POST /rd “</occ…”

 2.05 Content: “</rd>”

Created location: /rd/12

Occupancy
Sensor

CoAP RD

GET /.well-known/core

 2.05 Content: “</occ...”

(a) (b)

Figure 11: (a) Stateful and (b) Stateless Resource

Registrations in the CoAP RD

Nevertheless, the obtained result for the distributed case

has connotations: it has to be noted that a time-to-live (TTL)

value of 1 was used for the multicast case, where the TTL

represents the number of hops that the multicast packet can

traverse. This means that the multicast request was sent once

by the client and not forwarded by any of the servers. In the

specific case of a star network, where the TTL can be easily

established, a distributed service discovery introduces less

overhead than using directories but it is less reliable. Note

however that the lower overhead does not hold for a multi-

hop network as the TTL must be set to a larger value. As long

as TTL > 1, a single multicast packet will be forwarded, even

if the request already traversed a node. Furthermore, note that

a remote client located in a different site would not be able to

perform multicast discovery. Thus, the multicast approach is

more suitable for performing discovery in a small low power

network, which does not require remote discovery.

Alternatively, the RD may behave as a client utilizing

distributed discovery to populate its tables (Stateless

registration according to Section II.B). This would allow the

use of distributed discovery while keeping a central directory

for remote discovery which would only be proactively updated

by the RD. Figure 11 shows examples of both stateful and

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

13

stateless resource registration processes at the CoAP RD.

Because multicast requests are unreliable in the sense that

some nodes may not overhear the request, the serial unicast

distributed resource discovery case was also analyzed (see

Figure 10). As can be observed from Figure 10, this discovery

process is much more inefficient in terms of overhead than

the multicast discovery. However, it is reliable. In addition,

the serial unicast discovery requires the client to know the

address of each of the available servers which in turn may

require undesirable manual configuration.

Finally, for completeness, Figure 12 shows the same results

for a large star network composed of 40 nodes. As can be

seen, the same conclusions hold for the larger network, but

more pronounced than in the smaller case. They include

inefficient RD discovery process, redundant information

transmitted in the RD lookup response, and inefficient serial

unicast discovery.

Figure 12: CoAP Based Service Discovery Overhead

(40 servers, 1 Client Star Network)

Figure 13: DNS-SD Overhead (2 Servers, 1 Client Star

Network)

1) DNS-SD Overhead Analysis

This section analyzes the overhead associated with the

DNS-SD protocol for service discovery. Again, the analysis is

presented for different stages of the discovery process, i.e.,

publication, browsing (local and global), and resolution (local

and global). Moreover, the results demonstate the overhead

for two different DNS-SD implementations: Avahi [42] and

light weight Multicast DNS (lmDNS) [43]. Avahi is a DNS-

SD and mDNS free implementation for Linux-based

Operating Systems (OS), while lmDNS is a lightweight

implementation of mDNS for IP-enabled Smart Objects

developed with the Contiki OS.

Figure 13 shows the overhead for the same scenario as

before: a star network with two servers and one client. As can

be seen, the Avahi implementation performs quite poorly in

terms of overhead at the publication phase since it splits the

publication in several messages. Initially up to three messages

are sent to query other devices if they have selected the same

service instance name in order to avoid name collisions

(probing messages). Once collisions are discarded, the device

can proceed to advertise the service (note that when collisions

are detected the whole process has to be reinitiated for the

new selected service instance name). For instance, for a light

service, the following steps are followed in the performed

experiments:

- Service name resolution query (sent up to three

times for probing):

mDNS Standard query ANY

BULB_bc._coap._udp.local

Authoritative records

BULB_bc._coap._udp. SRV 0 0 5683 light1.local

TXT "path=/lt/2/on"

TXT "rt=ipso.lt.on"

- Announcement of service: Standard query response

BULB_bc._coap._udp. SRV 0 0 5683 light1.local

TXT "path=/lt/2/on"

TXT "rt=ipso.lt.on"

This includes the basic type with a pointer:

 _coap._udp.local PTR

BULB_bc._coap._udp.local

And also the additional pointers that we want to

define (as per Table 1):

_bulb._sub._coap._udp.local PTR

BULB_bc._coap._udp.local

Note that the same information is transmitted four times:

probing messages send the TXT and SVR records up to three

times, and the advertisement sends TXT, SVR and PTR.

Probing is reduced with the lmDNS implementation to just

one message and then advertisement is performed. Thus, if a

name collision occurs, lmDNS has to take corrective

measures.

As shown in Figure 13, the performance with lmDNS

improves substantially at the publication phase as the probing

messages are reduced. Therefore, this demonstrates the

importance of how the discovery protocol is implemented for

https://www.researchgate.net/publication/261427432_Light-Weight_Multicast_DNS_and_DNS-SD_lmDNS-SD_IPv6-Based_Resource_and_Service_Discovery_for_the_Web_of_Things?el=1_x_8&enrichId=rgreq-d4389bef4b2205cb5e6d1eb0640625d5-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU5MTg5OTtBUzozMzAwNjA1NzkwMDAzMjJAMTQ1NTcwMzk4MjY2MQ==

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

14

low power networks, since avoiding potentially unnecessary

messages or control overhead can translate into significant

energy savings.

With regard to browsing and resolution, lmDNS

outperforms Avahi in terms of overhead again. This is due to

the fact that Avahi includes all available records in the

response whereas lmDNS only includes the information that

is strictly necessary.

Finally, with regard to performing local or global (unicast)

browsing, we can observe that there is no significant

difference in terms of overhead for the lmDNS

implementation.

For completeness, Figure 14 shows the results for a star

network with 40 servers. We observe that the Avahi

implementation is not suitable for low power networks due to

the huge message overhead.

Figure 14: DNS-SD Overhead (40 Servers, 1 Client Star

Network)

Figure 15: Architecture with Global and Local Directories

1) DNS-SD vs. CoAP Resource Discovery

Comparing the overhead incurred in service discovery by

the lmDNS implementation to the distributed CoAP

implementation, the results clearly demonstrate that CoAP is

much more efficient. In the distributed case, only the

multicast or unicast lookup phases are executed by CoAP with

an overhead of around 100-150 bytes for the 2 server network

case. On the other hand, for mDNS, during the

advertisement, browsing, and resolution phases, message

transmission incurs a total approximated overhead of 700

bytes. Thus, lmDNS introduces about seven times more

overhead. Therefore, depending on how frequently the

network changes, due to changes in connectivity, mobility,

node deaths, etc., the higher overhead of lmDNS will have

negative effects on the network in terms of energy

consumption and lifetime.

In summary, CoAP discovery protocols show much better

performance in terms of overhead than DNS discovery

protocols. Indeed, CoAP is the most sensible approach when

working with low power constrained devices. The DNS

service discovery should only be considered while integrating

with existing domain name systems as depicted in Figure 15.

Similar to the binding proposed in [44], we suggest in those

cases utilizing DNS-SD at the backend level and CoAP at the

field level in order to reduce packet overhead.

B. Discovery Functionality

The IETF community considers the current options for

service or resource discovery capabilities in IP based low

power wireless embedded networks based on CoAP and DNS

protocols, thereby providing use cases and recommendations

for each option while developing these mechanisms further.

Only time will tell if they will all coexist or one of them will

finally prevail. Although these options are similar in concept,

they provide different functionality in practice:

- CoAP allows discovery of different types of resources

with one single request using queries of the format:

?key=value. For instance, in order to find two types

or resources, a query could be written as:

?rt=ipso.lt.on&rt=ipso.lt.dim for a light switch and

light dimmer resource. On the other hand,

independent requests would have to be issued to

perform the same type of discovery using DNS.

- CoAP allows the use of wildcard patterns such as:

?rt=core.rd* in order to get any resource that may

start with core.rd. This is not supported by DNS.

- After a discovery request is issued, CoAP directly

provides a resource that may be acted upon. On the

other hand, DNS-SD provides service instances that

later have to be resolved to IP addresses or host

names.

To summarize, in general, CoAP based resource discovery

allows a more efficient and richer set of mechanisms to

perform lookups. Any device that implements CoAP is able to

perform CoAP resource discovery, as no additional request

methods are introduced. In addition, very little additional

functionality is required for an end-point to register or

perform lookups in an RD. On the other hand, DNS-SD is

already employed as discovery mechanism for non-embedded

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

15

devices, which means that using a DNS server for service

discovery allows having a single centralized point where the

discovery may be performed with a unicast DNS approach. If

DNS is already required in a LoWPAN, then DNS-SD is

easily implemented using standard DNS packet formats,

queries, etc. Finally, mDNS requires additional memory in

order to store service discovery information received from the

neighborhood.

C. Interoperability

An important evaluation parameter for service discovery

mechanisms is their interoperability. As mentioned earlier,

some service discovery protocols for low power networks,

such as those specified in the ZigBee standard, would only

allow discovery between ZigBee enabled devices or between

nodes and gateways. Thus, there is a clear lack of

interoperability in their design. Since the protocols reviewed

in this paper are based on DNS or RESTful Web technology,

their interoperability with other IP based systems is assured.

Given DNS service discovery is already employed widely,

using this discovery method would likely allow almost

immediate discovery by other existing systems. On the other

hand, employing CoAP based discovery is also quite straight

forward for those devices outside the low power network by

installing additional protocol functionality in the legacy

devices. It is worth mentioning that some initial proposals

were made to combine both discovery systems by mapping

CoAP RD registrations to DNS-SD records [44]. This allows

employing CoAP at the low power network level and DNS-

SD at the enterprise level (see Figure 15).

Finally, CoAP and DNS based service discovery protocols

are independent of how the resource types or service instance

names are defined. Thus, every SDO may define their own

resource types and service instances for each of their devices

as this will not influence the discovery performance.

However, any device looking for a service defined by an SDO

must know the standard name that the SDO has defined for

the service. Therefore, the IPSO Alliance is currently defining

standard resource types for CoAP based resources [45].

D. Scalability

Many M2M applications, such as building automation,

require the deployment of a large number of devices to help

monitor and control the performance of building equipment.

For such applications, an important requirement is the

scalability of the communication protocols used. As

discussed, service discovery can be achieved in a distributed

or centralized fashion. Although distributed approaches have

the advantage that they do not require intermediate

directories, they rely on sending multicast requests to perform

discovery locally with distributed CoAP or mDNS or in a site

with xmDNS. Thus, the scalability may be a problem for

large scale multi-hop deployments. For instance, imagine a

building floor where sensors and actuators are connected in a

mesh network. Now consider that an occupancy sensor

located in the main entrance needs to discover every light

switch on the floor. When using xmDNS, the request would

be flooded across multiple hops in the network as shown in

Figure 16 (a). If every light switch is awake, up and running

whenever this request is issued, the requesting sensor would

receive an individual response from each of the switches.

Depending on the devices’ sleep schedules at the MAC layer,

these responses would reach the sensor with different delays.

As multicast is not reliable, some requests and responses may

not be received along the multi-hop path which in turn may

trigger further flooding of multicast requests. Along the same

line, service advertisements are sent as multicast messages as

well. Thus, a single device would potentially forward as many

advertisements as there are nodes in the network, either once

or multiple times, depending on how many advertisements

are required. In summary, protocols based on the multicast

are best suited for small networks, such as home area

networks, or for those applications where discovery needs to

be performed only in the local neighborhood (e.g., an

occupancy sensor activating an appliance located one hop

away). However, multicast protocols are not well suited for

larger multi-hop networks where large numbers of flooded

multicast packets would be too expensive in terms of energy

and bandwidth.

With regard to the use of a directory, such as the CoAP

RD, the scalability needs to be considered here as well. In a

multi-hop network with RD location known (e.g., the RD is

located in the 6LoWPAN border router), every node would

have to issue a request to obtain the RD resource, e.g. </rd>,

and forward any requests coming from its children in the

routing path (this process corresponds to Figure 5 in Section

IV.A.2). Similarly, every device will send a subscription

request to the RD and forward those coming from its

children, as illustrated in Figure 16(b). Once this is done, a

node willing to discover a specific service offered by any node

would issue a single unicast request to the directory which

would respond with another single unicast request. Note that

in order to maintain the freshness of the entries in the

directory, the nodes will have to send unicast requests

periodically to the directory; otherwise the directory will need

to validate entries periodically.

Whenever a service fails, say due to battery depletion or

connectivity problems, a node using a multicast based service

discovery mechanism would likely have to send a new

multicast request to find a similar service. On the other hand,

when a directory is used, the node would send just a unicast

request to the directory to find an alternative service. In

conclusion, the use of a directory would be more appropriate

for larger multi-hop networks as it provides better scalability

than distributed service discovery mechanisms based on the

multicast.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

16

(a) (b)

Figure 16: (a) Advertisement flooding vs. (b) Unicast

Directory Registration

E. Reliability and Robustness

Reliability and robustness of the service discovery

mechanism is a key to low power wireless networks where

nodes may become unavailable due to battery depletion, bad

channel conditions, mobility, or long sleep periods with the

radio turned off.

 Clearly, methods using multicast queries to advertise or

discover services are prone to failures since multicast requests

are unreliable. When a client sends a multicast request, it

does not have the means to know whether the request has

reached all the intended destinations. In other words, a device

wanting to discover all the smart lights in a room may only

end up discovering a subset, or even none of them. One

possibility to counteract this problem is to send serial unicast

requests or repeated multicast requests. Nevertheless, these

solutions are expensive in terms of message overhead, which

is undesirable in low power (constrained) networks. Given the

limitations associated with the multicast, the IETF CoRE

working group is currently considering the introduction of

mechanisms to enable reliable multicast transactions [45].

Smart
switch

(a)

(b)

Sensor
[2001::12]

GET /temp

 2.05 Content: 22 C

GET /temp

X
GET /temp

X

Battery
Depleted

RD

(c)
GET /rd/res?rt=temp

 2.05 Content: “<coap://[2001::12]:
5683/temp>”

GET /temp

X
(d)

Figure 17: (a) Device Read Temperature Resource, (b)

Attempt to Read Resource Fails, (c) Lookup to Outdated

RD, (d) Persistent Failure Due to Outdated RD

To explain the robustness issues in a distributed service

discovery mechanism, let us consider the failure of a node

currently providing a service to a client. In such an event, the

client will notice the failure as soon as it fails to receive

information or acknowledgements from the device offering

the service. Moreover, the client would need to find a similar

service. For this purpose, the client checks its own database to

see if a similar service was previously received through an

advertisement, and the attempts to use it. Otherwise, the

device attempts to directly send a multicast or unicast request

to ask for a similar service. If the multicast or unicast request

succeeds, the device starts using the new service immediately.

In summary, a distributed service discovery mechanism can

provide robust operation even when a service becomes

unavailable as long as the discovery mechanism is reliable

enough to provide alternative sources for a service.

On the other hand, with regards to the directory based

service discovery, when entries of the directory are populated

using reliable unicast requests, the devices can be sure that

their services have been registered successfully. Thus, this

method offers higher reliability than their multicast based

counterparts. As regards to node failures, if a device has some

other equivalent service details stored, it can attempt to use

the alternative service directly. Otherwise the device has to

look for a new equivalent service within the directory. For

this purpose, the directory must also keep its entries as

coherent as possible with the real status of the network so that

the services which are no longer available are not

discoverable. Therefore, the challenge here is to balance the

need for sending frequent updates to keep the directories

updated and reducing the energy consumption on control

tasks to a minimum. Figure 17 shows an example of a

resource failure case when utilizing an RD for resource

discovery. After having discovered a temperature resource

available in the node with address [2001::12], the smart

switch of the example starts reading the resource as in Figure

17(a). After a while the temperature sensor fails due to battery

depletion. The switch becomes aware of this by failing to

receive updates and decides to ask the RD for a new

temperature resource (see Figure 17(b) and 17(c)). In this

case, the RD is not coherent with the status of the network,

that is, it still stores temperature resource in the node

[2001::12] even though this is not reachable any more.

Because of this unawareness, the RD returns the unavailable

resource URI to the switch which in turn attempts to use the

service again as depicted in Figure 17(d). To summarize, if

we measure robustness as the capability of a device to find a

new service when the current one fails, the robustness will

directly depend on the ability of the system to keep the

directory entries as coherent as possible with the real status of

the network.

F. Human Interaction

One of the drivers behind introducing service discovery

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

17

protocols into low power networks is the need to create

independent, self-configurable systems. Service discovery

mechanisms are a key element to achieving self-configuration

at the application layer. The use of multicast DNS at the local

level allows devices to discover each other locally. In contrast,

the use of dynamic DNS updates allows devices to modify

registrations in the global DNS servers in a unicast fashion

[40]. Thus, when employing DNS, if service instances and

host names are created autonomously by the individual

devices, then the need for human configuration is eliminated.

However, this human-free case may not be possible for some

special M2M scenarios. For instance, in the building

automation case, because location information needs to be

embedded in service instances and host names, some manual

configuration may be necessary [38] [47]. The same applies to

CoAP when host names are used to identify the nodes instead

of IP addresses. If manually introduced host names are not

necessary, the CoAP resource discovery can work

autonomously.

Finally, it is worth mentioning that the CoRE working

group is currently defining standard service types for devices

to find those servers providing application configuration

information [45]. This will eliminate the need for a human

operator to configure the operational parameters of

individual devices, as this information would be obtained

through the requested configuration service.

G. Groups

Another interesting service discovery feature useful for

some M2M applications, such as building automation, is the

ability to create and discover groups of similar services. For

instance, when a single device such as an occupancy detector

wants to use multiple similar services at the same time such

as turning on several smart lights, it is useful to have groups

of services.

For this purpose, while using unicast DNS, the DNS group

records may be created manually by an operator and then

registered to the DNS server. Alternatively, the DNS server

may also create the records autonomously by grouping similar

service types. Here, each group must be associated with a

multicast address. A similar process can be followed for

creating group resource records with CoAP.

It is to be noted that no mechanism has so far been

proposed to autonomously create group service records for

distributed CoAP resource discovery, mDNS, or xmDNS.

Thus some additional functionality should be added to allow

the creation of groups in a distributed fashion. Indeed, the

IETF community is in the process of defining alternative

mechanisms to perform CoAP based group communications,

such as reliable multicast [45].

H. CoAP and DNS Service Discovery Enhancements for

Low Power Networks

In the literature, there exist some solutions to improve the

current CoAP resource discovery mechanisms proposed by

the IETF CoRE Working Group. For example, TRENDY [48]

aims at increasing the scalability of the CoAP RD solution by

proposing a grouping mechanism based on the locations of

devices. In order to reduce the traffic towards a single

directory agent (DA) hosting an RD, TRENDY proposes the

assignment of group leaders (GLs) in the sensor network. The

GLs report to the DA and act as a mediator for the

maintenance of resources belonging to their group members.

In addition to reducing traffic towards the DA for status

maintenance, the proposed approach allows the DA to

execute location based commands. On the other hand, the

authors in [49] improve the scalability of service discovery by

using a hierarchy of linked CoAP servers and integrating

them with DNS-SD, in order to discover sensors from any

remote location through the Internet. In the sensor network,

the devices are discovered from the gateway by sending CoAP

GET requests to a well-known resource that allows the

retrieval of its name and address. Then, the sensor gateway

stores this information in a local DNS to act as a resolver of

DNS requests coming from higher entities in the hierarchy,

e.g., an Internet gateway.

There also exists literature focusing on the mDNS protocol

in sensor networks. The authors in [43][50][51] have

presented several lightweight implementations of mDNS with

program code footprints ranging from 5KB to 10KB, which

demonstrates their suitability for constrained networks. In

order to facilitate lightweight implementations, the authors

provide the following guidelines to reduce network traffic and

processing: (i) do not respond to name and service requests

directed to other nodes (additional section in the text entry);

(ii) combine multiple TXT entries into single records; (iii)

compress the text entries with data compression methods such

as LZ-77 [52]; and (iv) use the IP layer buffer to generate

DNS messages, thus reducing the processing required for

handling DNS requests.

VI. OPEN SOURCE TOOLS AND CHALLENGES

This section describes open source tools that may be used

to experiment with both CoAP and DNS based discovery

protocols. It also discusses some open issues and challenges.

A. DNS Service Discovery Open Source Tools

As surveyed in Section III.A, Apple’s Bonjour is the most

popular implementation for service discovery and is available

for a variety of platforms, including Mac OS X, Windows,

and Linux/BSD. Bonjour has been recently released under the

Apache 2.0 license. Given the wide variety of available

implementations, Bonjour is probably the best choice to test

service discovery for enterprise or desktop applications.

The other option to test DNS-SD is Avahi, which was used

for comparison in Section V of this paper. This

implementation is available for Linux/BSD and multiple

Linux-based embedded systems such as routers, perhaps the

best choice for the development of gateway applications.

However, Bonjour and Avahi are still very heavy and thus

difficult to integrate into resource constrained devices. For

https://www.researchgate.net/publication/261427432_Light-Weight_Multicast_DNS_and_DNS-SD_lmDNS-SD_IPv6-Based_Resource_and_Service_Discovery_for_the_Web_of_Things?el=1_x_8&enrichId=rgreq-d4389bef4b2205cb5e6d1eb0640625d5-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU5MTg5OTtBUzozMzAwNjA1NzkwMDAzMjJAMTQ1NTcwMzk4MjY2MQ==
https://www.researchgate.net/publication/262359346_Commissioning_of_low_power_embedded_devices_with_IPv6CoAP?el=1_x_8&enrichId=rgreq-d4389bef4b2205cb5e6d1eb0640625d5-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU5MTg5OTtBUzozMzAwNjA1NzkwMDAzMjJAMTQ1NTcwMzk4MjY2MQ==
https://www.researchgate.net/publication/230584028_TRENDY_An_adaptive_and_context-aware_service_discovery_protocol_for_6LoWPANs?el=1_x_8&enrichId=rgreq-d4389bef4b2205cb5e6d1eb0640625d5-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU5MTg5OTtBUzozMzAwNjA1NzkwMDAzMjJAMTQ1NTcwMzk4MjY2MQ==
https://www.researchgate.net/publication/262424890_Bonjour_Contiki_A_Case_Study_of_a_DNS-Based_Discovery_Service_for_the_Internet_of_Things?el=1_x_8&enrichId=rgreq-d4389bef4b2205cb5e6d1eb0640625d5-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU5MTg5OTtBUzozMzAwNjA1NzkwMDAzMjJAMTQ1NTcwMzk4MjY2MQ==
https://www.researchgate.net/publication/231181329_Facilitating_Sensor_Deployment_Discovery_and_Resource_Access_Using_Embedded_Web_Services?el=1_x_8&enrichId=rgreq-d4389bef4b2205cb5e6d1eb0640625d5-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU5MTg5OTtBUzozMzAwNjA1NzkwMDAzMjJAMTQ1NTcwMzk4MjY2MQ==
https://www.researchgate.net/publication/238758003_A_universal_algorithm_for_data_compression?el=1_x_8&enrichId=rgreq-d4389bef4b2205cb5e6d1eb0640625d5-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU5MTg5OTtBUzozMzAwNjA1NzkwMDAzMjJAMTQ1NTcwMzk4MjY2MQ==

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

18

instance, Avahi makes use of Linux libraries, such as D-Bus

and glib, which are not suitable for microcontrollers with

limited processing capabilities. For evaluating and testing

service discovery protocols in constrained devices, a

lightweight version of mDNS agent should be implemented.

The Contiki OS DNS resolv library can be used for this

purpose [53].

B. CoAP Service Discovery Open Source Tools

In order to test CoAP based discovery algorithms several

possibilities are available [54][55][56][57][58]. The most

comprehensive implementations can be found for the Contiki

OS [57] and for Java under the Californium project [58]. The

Contiki OS version is suitable for low power devices whereas

the Java implementation is more suitable for back-end

applications. Both implementations are Open Source and

have a community behind them to keep up with the latest

standard developments.

C. Open Issues and Challenges

Several important open issues exist with regard to CoAP as

it is still work in progress. For instance, for integration

purposes, an initial approach was to allow the CoAP RD to

populate the DNS-SD server records in an autonomous

manner after performing mappings between CoAP resource

descriptions and DNS service descriptions [44]. However, this

work has currently been discontinued, most likely waiting for

the RD proposal to be consolidated. Additionally, the current

RD specification is still work in progress and does not

provide details on how to register resources hosted by mirror

servers in order to enable caching of resources4. Moreover,

algorithms must be designed to balance control overhead and

information freshness when utilizing directories in order to

provide robust service discovery (see Section V.E).

Furthermore, mechanisms to integrate legacy sensor networks

with CoAP or DNS based systems should be available to

allow the discovery of legacy services and devices.

With regards to security, one of the most critical challenges

is to provide secure access to resources and secure

registrations while respecting low power operation

requirements [60][61]. This is particularly critical when the

devices and their resources may be directly accessible over the

Internet. Moreover, CoAP may be vulnerable to Denial of

Service (DoS) attacks [19] when a request is multicast to the

/.well-known/core interface.

VII. CONCLUSION

This paper presented a comprehensive overview of service

discovery protocols for constrained M2M networks. As

explained, although many service discovery protocols exist

for traditional networks, they are not quite suitable for

4
 A mirror server is usually a line powered entity that contains copies of

resources hosted by low power devices in order to allow fast access to sleeping

device resources [59].

constrained networks where energy and computational

efficiency is of paramount importance. Furthermore, some

existing discovery protocols specifically designed for low

power networks (e.g. ZigBee) have limited interoperability as

they are just designed to work at the field level and require

specific manual bindings at the gateway level. Due to these

limitations, the IETF community is working on the

specification of several discovery protocols for low power

networks whose objective is to satisfy lower energy and time

complexity requirements while maintaining high

interoperability with other systems. These protocols, namely

CoAP resource discovery and DNS-SD, offer different

functionality with advantages and disadvantages as our

performance evaluation results demonstrated. On one hand,

CoAP provides higher granularity and higher efficiency in

terms of lower overhead. On the other hand, DNS has the

advantage of wide adoption in traditional networks, which

has the potential to offer immediate integration. Because of

such differing characteristics as well as dependency on the

deployment scenario, it is not possible to predict at this stage

which one of these two protocols will prevail.

Acknowledgements: The authors are grateful to the

anonymous referees for their insightful comments which

helped us significantly improve the quality of the manuscript.

REFERENCES

[1] M.R. Palattella, N. Accettura, X. Vilajosana, T. Watteyne, L.A. Grieco, G.

Boggia, M. Dohler, "Standardized Protocol Stack For The Internet Of

(Important) Things," IEEE Communications Surveys and Tutorials, DOI

10.1109/SURV.2012.111412.00158.

[2] F. Baker, D. Meyer. Internet Protocols for The Smart Grid. IETF

RFC6272, June 2011.

[3] Bergmann, O.; Hillmann, K.T.; Gerdes, S., "A CoAP-gateway for smart

homes," Computing, Networking and Communications (ICNC), 2012

International Conference on , vol., no., pp.446,450, Jan. 30 2012-Feb. 2

2012.

[4] M. Ersue, D. Romascanu, J. Schoenwaelder, Management of Networks

with Constrained Devices: Problem Statement, Use Cases and

Requirements. (IETF I-D work in progress), [Expired February 2013].

[5] W.K. Edwards. Discovery Systems in Ubiquitous Computing. IEEE

Pervasive Computing, 5 (2) (2006), pp. 70–77

[6] http://www.upnp.org/ UPnP Forum, UPnP Device Architecture 1.1,

October 2008.

[7] E. Guttman, C. Perkins, J. Veizades and M. Day. Service Location

Protocol, Version 2. IETF RFC2165, June 1999.

[8] http://river.apache.org/doc/spec-index.html Jini Specification [Last

accessed April 2013]

[9] http://salutation.org/wp-content/uploads/2012/05/originalwp.pdf

Salutation Architecture Overview [Last accessed September 2012]

[10] N. Kushalnagar, G. Montenegro, C. Schumacher. IPv6 over Low-Power

Wireless Personal Area Networks (6LoWPANs): Overview, Assumptions,

Problem Statement, and Goals. IETF RFC4919. 2007

[11] Z. Shelby, K. Hartke, C. Bormann, and B. Frank. Constrained Application

Protocol (CoAP). (IETF I-D work in progress), [Expires October 2013].

[12] http://datatracker.ietf.org/wg/core/charter/ IETF CoRE Working Group

[Last accessed April 2013]

[13] Z. Shelby, M. Garrison Stuber, D. Sturek, B. Frank and R. Kelsey. CoAP

Requirements and Features. (IETF I-D work in progress), [Expired

November 2011].

[14] S. Cheshire and M. Krochmal. DNS-Based Service Discovery. RFC 6763.

ISSN: 2070-1721, Internet Engineering Task Force, February 2013.

[15] Zigbee Specification. ZigBee Document 053474r17, January 2008.

http://www.upnp.org/
http://river.apache.org/doc/spec-index.html
http://salutation.org/wp-content/uploads/2012/05/originalwp.pdf
http://datatracker.ietf.org/wg/core/charter/
https://www.researchgate.net/publication/233731542_Standardized_Protocol_Stack_For_The_Internet_Of_Important_Things?el=1_x_8&enrichId=rgreq-d4389bef4b2205cb5e6d1eb0640625d5-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU5MTg5OTtBUzozMzAwNjA1NzkwMDAzMjJAMTQ1NTcwMzk4MjY2MQ==
https://www.researchgate.net/publication/233731542_Standardized_Protocol_Stack_For_The_Internet_Of_Important_Things?el=1_x_8&enrichId=rgreq-d4389bef4b2205cb5e6d1eb0640625d5-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU5MTg5OTtBUzozMzAwNjA1NzkwMDAzMjJAMTQ1NTcwMzk4MjY2MQ==
https://www.researchgate.net/publication/233731542_Standardized_Protocol_Stack_For_The_Internet_Of_Important_Things?el=1_x_8&enrichId=rgreq-d4389bef4b2205cb5e6d1eb0640625d5-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU5MTg5OTtBUzozMzAwNjA1NzkwMDAzMjJAMTQ1NTcwMzk4MjY2MQ==
https://www.researchgate.net/publication/233731542_Standardized_Protocol_Stack_For_The_Internet_Of_Important_Things?el=1_x_8&enrichId=rgreq-d4389bef4b2205cb5e6d1eb0640625d5-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU5MTg5OTtBUzozMzAwNjA1NzkwMDAzMjJAMTQ1NTcwMzk4MjY2MQ==
https://www.researchgate.net/publication/238676729_IPv6_over_Low-Power_Wireless_Personal_Area_Networks_6LoWPANs_Overview_Assumptions_Problem_Statement_and_Goals?el=1_x_8&enrichId=rgreq-d4389bef4b2205cb5e6d1eb0640625d5-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU5MTg5OTtBUzozMzAwNjA1NzkwMDAzMjJAMTQ1NTcwMzk4MjY2MQ==
https://www.researchgate.net/publication/238676729_IPv6_over_Low-Power_Wireless_Personal_Area_Networks_6LoWPANs_Overview_Assumptions_Problem_Statement_and_Goals?el=1_x_8&enrichId=rgreq-d4389bef4b2205cb5e6d1eb0640625d5-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU5MTg5OTtBUzozMzAwNjA1NzkwMDAzMjJAMTQ1NTcwMzk4MjY2MQ==
https://www.researchgate.net/publication/238676729_IPv6_over_Low-Power_Wireless_Personal_Area_Networks_6LoWPANs_Overview_Assumptions_Problem_Statement_and_Goals?el=1_x_8&enrichId=rgreq-d4389bef4b2205cb5e6d1eb0640625d5-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU5MTg5OTtBUzozMzAwNjA1NzkwMDAzMjJAMTQ1NTcwMzk4MjY2MQ==
https://www.researchgate.net/publication/245965452_DNS-Based_Service_Discovery?el=1_x_8&enrichId=rgreq-d4389bef4b2205cb5e6d1eb0640625d5-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU5MTg5OTtBUzozMzAwNjA1NzkwMDAzMjJAMTQ1NTcwMzk4MjY2MQ==
https://www.researchgate.net/publication/245965452_DNS-Based_Service_Discovery?el=1_x_8&enrichId=rgreq-d4389bef4b2205cb5e6d1eb0640625d5-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU5MTg5OTtBUzozMzAwNjA1NzkwMDAzMjJAMTQ1NTcwMzk4MjY2MQ==
https://www.researchgate.net/publication/3437159_Discovery_Systems_in_Ubiquitous_Computing?el=1_x_8&enrichId=rgreq-d4389bef4b2205cb5e6d1eb0640625d5-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU5MTg5OTtBUzozMzAwNjA1NzkwMDAzMjJAMTQ1NTcwMzk4MjY2MQ==
https://www.researchgate.net/publication/3437159_Discovery_Systems_in_Ubiquitous_Computing?el=1_x_8&enrichId=rgreq-d4389bef4b2205cb5e6d1eb0640625d5-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU5MTg5OTtBUzozMzAwNjA1NzkwMDAzMjJAMTQ1NTcwMzk4MjY2MQ==
https://www.researchgate.net/publication/254020854_A_CoAP-gateway_for_smart_homes?el=1_x_8&enrichId=rgreq-d4389bef4b2205cb5e6d1eb0640625d5-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU5MTg5OTtBUzozMzAwNjA1NzkwMDAzMjJAMTQ1NTcwMzk4MjY2MQ==
https://www.researchgate.net/publication/254020854_A_CoAP-gateway_for_smart_homes?el=1_x_8&enrichId=rgreq-d4389bef4b2205cb5e6d1eb0640625d5-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU5MTg5OTtBUzozMzAwNjA1NzkwMDAzMjJAMTQ1NTcwMzk4MjY2MQ==

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

19

[16] C.N. Ververidis, G.C. Polyzos. Service Discovery for Mobile Ad Hoc

Networks: a Survey of Issues and Techniques. Communications Surveys &

Tutorials, IEEE , vol.10, no.3, pp.30-45, Third Quarter 2008

[17] A.N. Mian, R. Baldoni, R. Beraldi. A Survey of Service Discovery

Protocols in Multihop Mobile Ad Hoc Networks. IEEE Pervasive

Computing, vol.8, no.1, pp.66-74, Jan.-March 2009.

[18] P. Bellavista, A, Corradi, and C. Giannelli, Resource and Service

Discovery. In Mobile Agents in Networking and Distributed Computing

(eds: J. Cao and S. K. Das), Chapter 7, pp. 161-187, Wiley, July 2012

(ISBN: 978-0-471-75160-1).

[19] Z. Shelby, CoRE Link Format. Internet Engineering Task Force, RFC

6690.

[20] Z. Shelby and S. Krco. CoRE Resource Directory. (IETF I-D work in

progress), [Expires August 2013].

[21] S. Cheshire and M. Krochmal. Multicast DNS. ISSN: 2010-1721, Internet

Engineering Task Force, February 2013.

[22] K. Lynn and D. Sturek. Extended Multicast DNS. (IETF I-D work in

progress), [Expires March 2013].

[23] Apple Bonjour https://developer.apple.com/bonjour/ [Last accessed April

2013].

[24] Y. Yaron, T.C. Goland, P. Leach, Y. Gu and S. Albright, Simple Service

Discovery Protocol/1.0 Operating without an Arbiter, draft-cai-ssdp-v1-03

(IETF I-D work in progress), [Expires October 1999].

[25] Universal Description, Discovery and Integration http://uddi.xml.org/

[Last accessed April 2013].

[26] KNX Standard. System Specifications. Architecture. June 2009

[27] M. Galeev, Catching the Z-Wave. In technical papers and application notes

on embedded & system design. EE Times India. October, 2006.

[28] EnOcean Radio Protocol. Specification v1.0. February, 2011.

[29] Bluetooth Service Discovery Application Profile (SDAP)

https://www.bluetooth.org/Building/HowTechnologyWorks/ProfilesAndPr

otocols/SDAP.htm [Last accessed April 2013].

[30] Zigbee Alliance. Understanding ZigBee Gateway. How ZigBee extends an

IP network. September 2010. https://docs.zigbee.org/zigbee-docs/dcn/09-

5465.pdf [Last accessed April 2013]

[31] Sensinode Ltd. http://www.sensinode.com

[32] K. Kim, S. Yoo, H. Lee, S. Park, and J. Lee. Simple Service Location

Protocol (SSLP) for 6LoWPAN. (IETF I-D work in progress), [Expires

October 2009].

[33] A. Kovacevic, J. Ansari, and P. Mahonen. Nanosd: A Flexible Service

Discovery Protocol for Dynamic and Heterogeneous Wireless Sensor

Networks. International Conference on Mobile Ad-hoc and Sensor

Networks, 2010.

[34] F. Anwar, M. Raza, S. Yoo, and K. Kim. ENUM Based Service Discovery

Architecture for 6lowpan. In Wireless Communications and Networking

Conference (WCNC), 2010 IEEE, pages 1-6. IEEE, 2010.

[35] Recommendation ITU-T E.164. Numbering Plan of the International

Telephone Service. November 2011.

[36] Zigbee Alliance News: ZigBee Smart Energy Working Group Reaches

Major Agreement on Use of HTTP and CoAP [Online]

http://www.zigbee.org/, [Last accessed April 2013].

[37] BACnet IT Working Group, http://www.bacnet.org/WG/IT/index.html

[Last accessed April 2013].

[38] P. van der Stok, K. Lynn, and A. Brandt. CoRE Discovery, Naming, and

Addressing. (IETF I-D work in progress), [Expires January 2013].

[39] Z. Shelby and M. Vial. CoRE Interfaces. (IETF I-D work in progress),

[Expires September 2013].

[40] P. Vixie, S. Thomson, Y. Rekhter and J. Bound. Dynamic Updates in the

Domain Name System (DNS UPDATE), Internet Engineering Task Force,

RFC 2136. 1997.

[41] S. Cheshire, M. Krochmal, K. Sekar. DNS Long-Lived Queries (IETF I-D

work in progress), [Expires February 2007].

[42] Avahi implementation http://avahi.org/..[Last accessed April 2012].

[43] A. J. Jara, P. Martinez-Julia, A. Skarmeta. Light-Weight Multicast DNS

and DNS-SD (lmDNS-SD): IPv6-Based Resource and Service Discovery

for the Web of Things. Sixth International Conference on Innovative

Mobile and Internet Services in Ubiquitous Computing (IMIS), 2012.

[44] K. Lynn, Z. Shelvy. CoRE Link-Format to DNS-Based Service Discovery

Mapping. (IETF I-D work in progress), [Expires January 2012].

[45] Z. Shelby and C. Chauvenet. The IPSO Application Framework (draft-

ipso-app-framework-04), August 2012.

[46] E. Dijk, A. Rahman. Miscellaneous CoAP Group Communication Topics.

(IETF I-D work in progress), [Expires June 2013].

[47] Berta Carballido Villaverde, Julien Oury, Dirk Pesch, Rodolfo De Paz

Alberola, Szymon Fedor. Demo Abstract: Commissioning of Low Power

Embedded Devices with IPv6/CoAP, 10th ACM Conference on Embedded

Networked Sensor Systems (SenSys), 2012.

[48] T. A. Butt, I. Phillips, L. Guan, G. Oikonomou. TRENDY: An Adaptive

and Context-Aware Service Discovery Protocol for 6LoWPANs. In

Proceedings of the International Workshop on the Web of Things (WoT),

Newcastle, UK, June 2012

[49] I. Ishaq, J. Hoebeke, J. Rossey, E. De Poorter, I. Moerman and P.

Demeester, Facilitating Sensor Deployment, Discovery and Resource

Access Using Embedded Web Services. In Proceedings of the Sixth

International Conference on Innovative Mobile and Internet Services in

Ubiquitous Computing, 2012.

[50] Å. Östmark, J. Eliasson, P. Lindgren, A. van Halteren, and L.Meppelink,

An Infrastructure for Service Oriented Sensor Networks. Journal of

Computers, 1(5), pp. 20-29, 2006, doi:10.4304/jcp.1.5.20-29.

[51] R. Klauck and M. Kirsche. Bonjour Contiki: A Case Study of a DNS-

Based Discovery Service for the Internet of Things. In Proceedings of the

11th International Conference on Ad-hoc, Mobile, and Wireless Networks

(ADHOC-NOW'12), Springer-Verlag, Berlin, Heidelberg, pp. 316-329,

2012.

[52] J. Ziv and A. Lempel, A Universal Algorithm for Sequential Data

Compression. IEEE Transactions on Information Theory, pp. 337-343,

May 1977

[53] http://www.sics.se/~bg/telos/html/a00117.html Contiki Resolv Library.

[Last Accessed April 2013].

[54] http://docs.tinyos.net/tinywiki/index.php TinyOS CoAP Implementation

[Last Accessed April 2013]

[55] http://code.google.com/p/jcoap/ jCoAP Implementation [Last Accessed

April 2013]

[56] http://coapy.sourceforge.net/ CoAPy Implementation [Last Accessed April

2013]

[57] http://people.inf.ethz.ch/mkovatsc/erbium.php Contiki CoAP

Implementation [Last Accessed April 2013]

[58] http://people.inf.ethz.ch/mkovatsc/californium.php. Californium CoAP

Framework [Last Accessed April 2013]

[59] M. Vial. CoRE Mirror Server. (IETF I-D work in progress), [Expires

October 2013].

[60] Olaf Bergmann, Stefanie Gerdes, Silke Sch¨afer, Florian Junge, Carsten

Bormann. Secure Bootstrapping of Nodes in a CoAP Network. WCNC

2012 Workshop on Internet of Things Enabling Technologies, Embracing

Machine-to-Machine Communications and Beyond. 2012.

[61] B. Sarikaya, Y. Ohba, R. Moskowitz, Z. Cao, R. Cragie. Security

Bootstrapping Solution for Resource-Constrained Device. (IETF I-D work

in progress), [Expires January 2013].

View publication statsView publication stats

https://developer.apple.com/bonjour/
http://uddi.xml.org/
https://www.bluetooth.org/Building/HowTechnologyWorks/ProfilesAndProtocols/SDAP.htm
https://www.bluetooth.org/Building/HowTechnologyWorks/ProfilesAndProtocols/SDAP.htm
https://docs.zigbee.org/zigbee-docs/dcn/09-5465.pdf
https://docs.zigbee.org/zigbee-docs/dcn/09-5465.pdf
http://www.sensinode.com/
http://www.bacnet.org/WG/IT/index.html
http://avahi.org/
http://www.sics.se/~bg/telos/html/a00117.html
http://docs.tinyos.net/tinywiki/index.php
http://code.google.com/p/jcoap/
http://coapy.sourceforge.net/
http://people.inf.ethz.ch/mkovatsc/erbium.php
https://www.researchgate.net/publication/220300000_A_Survey_of_Service_Discovery_Protocols_in_Multihop_Mobile_Ad_Hoc_Networks?el=1_x_8&enrichId=rgreq-d4389bef4b2205cb5e6d1eb0640625d5-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU5MTg5OTtBUzozMzAwNjA1NzkwMDAzMjJAMTQ1NTcwMzk4MjY2MQ==
https://www.researchgate.net/publication/220300000_A_Survey_of_Service_Discovery_Protocols_in_Multihop_Mobile_Ad_Hoc_Networks?el=1_x_8&enrichId=rgreq-d4389bef4b2205cb5e6d1eb0640625d5-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU5MTg5OTtBUzozMzAwNjA1NzkwMDAzMjJAMTQ1NTcwMzk4MjY2MQ==
https://www.researchgate.net/publication/220300000_A_Survey_of_Service_Discovery_Protocols_in_Multihop_Mobile_Ad_Hoc_Networks?el=1_x_8&enrichId=rgreq-d4389bef4b2205cb5e6d1eb0640625d5-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU5MTg5OTtBUzozMzAwNjA1NzkwMDAzMjJAMTQ1NTcwMzk4MjY2MQ==
https://www.researchgate.net/publication/255701136_Service_discovery_for_mobile_Ad_Hoc_networks_A_survey_of_issues_and_techniques?el=1_x_8&enrichId=rgreq-d4389bef4b2205cb5e6d1eb0640625d5-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU5MTg5OTtBUzozMzAwNjA1NzkwMDAzMjJAMTQ1NTcwMzk4MjY2MQ==
https://www.researchgate.net/publication/255701136_Service_discovery_for_mobile_Ad_Hoc_networks_A_survey_of_issues_and_techniques?el=1_x_8&enrichId=rgreq-d4389bef4b2205cb5e6d1eb0640625d5-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU5MTg5OTtBUzozMzAwNjA1NzkwMDAzMjJAMTQ1NTcwMzk4MjY2MQ==
https://www.researchgate.net/publication/255701136_Service_discovery_for_mobile_Ad_Hoc_networks_A_survey_of_issues_and_techniques?el=1_x_8&enrichId=rgreq-d4389bef4b2205cb5e6d1eb0640625d5-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU5MTg5OTtBUzozMzAwNjA1NzkwMDAzMjJAMTQ1NTcwMzk4MjY2MQ==
https://www.researchgate.net/publication/220963516_NanoSD_A_Flexible_Service_Discovery_Protocol_for_Dynamic_and_Heterogeneous_Wireless_Sensor_Networks?el=1_x_8&enrichId=rgreq-d4389bef4b2205cb5e6d1eb0640625d5-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU5MTg5OTtBUzozMzAwNjA1NzkwMDAzMjJAMTQ1NTcwMzk4MjY2MQ==
https://www.researchgate.net/publication/220963516_NanoSD_A_Flexible_Service_Discovery_Protocol_for_Dynamic_and_Heterogeneous_Wireless_Sensor_Networks?el=1_x_8&enrichId=rgreq-d4389bef4b2205cb5e6d1eb0640625d5-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU5MTg5OTtBUzozMzAwNjA1NzkwMDAzMjJAMTQ1NTcwMzk4MjY2MQ==
https://www.researchgate.net/publication/220963516_NanoSD_A_Flexible_Service_Discovery_Protocol_for_Dynamic_and_Heterogeneous_Wireless_Sensor_Networks?el=1_x_8&enrichId=rgreq-d4389bef4b2205cb5e6d1eb0640625d5-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU5MTg5OTtBUzozMzAwNjA1NzkwMDAzMjJAMTQ1NTcwMzk4MjY2MQ==
https://www.researchgate.net/publication/220963516_NanoSD_A_Flexible_Service_Discovery_Protocol_for_Dynamic_and_Heterogeneous_Wireless_Sensor_Networks?el=1_x_8&enrichId=rgreq-d4389bef4b2205cb5e6d1eb0640625d5-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU5MTg5OTtBUzozMzAwNjA1NzkwMDAzMjJAMTQ1NTcwMzk4MjY2MQ==
https://www.researchgate.net/publication/220970922_ENUM_based_service_discovery_architecture_for_6LoWPAN?el=1_x_8&enrichId=rgreq-d4389bef4b2205cb5e6d1eb0640625d5-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU5MTg5OTtBUzozMzAwNjA1NzkwMDAzMjJAMTQ1NTcwMzk4MjY2MQ==
https://www.researchgate.net/publication/220970922_ENUM_based_service_discovery_architecture_for_6LoWPAN?el=1_x_8&enrichId=rgreq-d4389bef4b2205cb5e6d1eb0640625d5-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU5MTg5OTtBUzozMzAwNjA1NzkwMDAzMjJAMTQ1NTcwMzk4MjY2MQ==
https://www.researchgate.net/publication/220970922_ENUM_based_service_discovery_architecture_for_6LoWPAN?el=1_x_8&enrichId=rgreq-d4389bef4b2205cb5e6d1eb0640625d5-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU5MTg5OTtBUzozMzAwNjA1NzkwMDAzMjJAMTQ1NTcwMzk4MjY2MQ==
https://www.researchgate.net/publication/261427432_Light-Weight_Multicast_DNS_and_DNS-SD_lmDNS-SD_IPv6-Based_Resource_and_Service_Discovery_for_the_Web_of_Things?el=1_x_8&enrichId=rgreq-d4389bef4b2205cb5e6d1eb0640625d5-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU5MTg5OTtBUzozMzAwNjA1NzkwMDAzMjJAMTQ1NTcwMzk4MjY2MQ==
https://www.researchgate.net/publication/261427432_Light-Weight_Multicast_DNS_and_DNS-SD_lmDNS-SD_IPv6-Based_Resource_and_Service_Discovery_for_the_Web_of_Things?el=1_x_8&enrichId=rgreq-d4389bef4b2205cb5e6d1eb0640625d5-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU5MTg5OTtBUzozMzAwNjA1NzkwMDAzMjJAMTQ1NTcwMzk4MjY2MQ==
https://www.researchgate.net/publication/261427432_Light-Weight_Multicast_DNS_and_DNS-SD_lmDNS-SD_IPv6-Based_Resource_and_Service_Discovery_for_the_Web_of_Things?el=1_x_8&enrichId=rgreq-d4389bef4b2205cb5e6d1eb0640625d5-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU5MTg5OTtBUzozMzAwNjA1NzkwMDAzMjJAMTQ1NTcwMzk4MjY2MQ==
https://www.researchgate.net/publication/261427432_Light-Weight_Multicast_DNS_and_DNS-SD_lmDNS-SD_IPv6-Based_Resource_and_Service_Discovery_for_the_Web_of_Things?el=1_x_8&enrichId=rgreq-d4389bef4b2205cb5e6d1eb0640625d5-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU5MTg5OTtBUzozMzAwNjA1NzkwMDAzMjJAMTQ1NTcwMzk4MjY2MQ==
https://www.researchgate.net/publication/262359346_Commissioning_of_low_power_embedded_devices_with_IPv6CoAP?el=1_x_8&enrichId=rgreq-d4389bef4b2205cb5e6d1eb0640625d5-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU5MTg5OTtBUzozMzAwNjA1NzkwMDAzMjJAMTQ1NTcwMzk4MjY2MQ==
https://www.researchgate.net/publication/262359346_Commissioning_of_low_power_embedded_devices_with_IPv6CoAP?el=1_x_8&enrichId=rgreq-d4389bef4b2205cb5e6d1eb0640625d5-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU5MTg5OTtBUzozMzAwNjA1NzkwMDAzMjJAMTQ1NTcwMzk4MjY2MQ==
https://www.researchgate.net/publication/262359346_Commissioning_of_low_power_embedded_devices_with_IPv6CoAP?el=1_x_8&enrichId=rgreq-d4389bef4b2205cb5e6d1eb0640625d5-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU5MTg5OTtBUzozMzAwNjA1NzkwMDAzMjJAMTQ1NTcwMzk4MjY2MQ==
https://www.researchgate.net/publication/262359346_Commissioning_of_low_power_embedded_devices_with_IPv6CoAP?el=1_x_8&enrichId=rgreq-d4389bef4b2205cb5e6d1eb0640625d5-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU5MTg5OTtBUzozMzAwNjA1NzkwMDAzMjJAMTQ1NTcwMzk4MjY2MQ==
https://www.researchgate.net/publication/230584028_TRENDY_An_adaptive_and_context-aware_service_discovery_protocol_for_6LoWPANs?el=1_x_8&enrichId=rgreq-d4389bef4b2205cb5e6d1eb0640625d5-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU5MTg5OTtBUzozMzAwNjA1NzkwMDAzMjJAMTQ1NTcwMzk4MjY2MQ==
https://www.researchgate.net/publication/230584028_TRENDY_An_adaptive_and_context-aware_service_discovery_protocol_for_6LoWPANs?el=1_x_8&enrichId=rgreq-d4389bef4b2205cb5e6d1eb0640625d5-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU5MTg5OTtBUzozMzAwNjA1NzkwMDAzMjJAMTQ1NTcwMzk4MjY2MQ==
https://www.researchgate.net/publication/230584028_TRENDY_An_adaptive_and_context-aware_service_discovery_protocol_for_6LoWPANs?el=1_x_8&enrichId=rgreq-d4389bef4b2205cb5e6d1eb0640625d5-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU5MTg5OTtBUzozMzAwNjA1NzkwMDAzMjJAMTQ1NTcwMzk4MjY2MQ==
https://www.researchgate.net/publication/230584028_TRENDY_An_adaptive_and_context-aware_service_discovery_protocol_for_6LoWPANs?el=1_x_8&enrichId=rgreq-d4389bef4b2205cb5e6d1eb0640625d5-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU5MTg5OTtBUzozMzAwNjA1NzkwMDAzMjJAMTQ1NTcwMzk4MjY2MQ==
https://www.researchgate.net/publication/42803306_An_Infrastructure_for_Service_Oriented_Sensor_Networks?el=1_x_8&enrichId=rgreq-d4389bef4b2205cb5e6d1eb0640625d5-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU5MTg5OTtBUzozMzAwNjA1NzkwMDAzMjJAMTQ1NTcwMzk4MjY2MQ==
https://www.researchgate.net/publication/42803306_An_Infrastructure_for_Service_Oriented_Sensor_Networks?el=1_x_8&enrichId=rgreq-d4389bef4b2205cb5e6d1eb0640625d5-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU5MTg5OTtBUzozMzAwNjA1NzkwMDAzMjJAMTQ1NTcwMzk4MjY2MQ==
https://www.researchgate.net/publication/42803306_An_Infrastructure_for_Service_Oriented_Sensor_Networks?el=1_x_8&enrichId=rgreq-d4389bef4b2205cb5e6d1eb0640625d5-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU5MTg5OTtBUzozMzAwNjA1NzkwMDAzMjJAMTQ1NTcwMzk4MjY2MQ==
https://www.researchgate.net/publication/262424890_Bonjour_Contiki_A_Case_Study_of_a_DNS-Based_Discovery_Service_for_the_Internet_of_Things?el=1_x_8&enrichId=rgreq-d4389bef4b2205cb5e6d1eb0640625d5-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU5MTg5OTtBUzozMzAwNjA1NzkwMDAzMjJAMTQ1NTcwMzk4MjY2MQ==
https://www.researchgate.net/publication/262424890_Bonjour_Contiki_A_Case_Study_of_a_DNS-Based_Discovery_Service_for_the_Internet_of_Things?el=1_x_8&enrichId=rgreq-d4389bef4b2205cb5e6d1eb0640625d5-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU5MTg5OTtBUzozMzAwNjA1NzkwMDAzMjJAMTQ1NTcwMzk4MjY2MQ==
https://www.researchgate.net/publication/262424890_Bonjour_Contiki_A_Case_Study_of_a_DNS-Based_Discovery_Service_for_the_Internet_of_Things?el=1_x_8&enrichId=rgreq-d4389bef4b2205cb5e6d1eb0640625d5-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU5MTg5OTtBUzozMzAwNjA1NzkwMDAzMjJAMTQ1NTcwMzk4MjY2MQ==
https://www.researchgate.net/publication/262424890_Bonjour_Contiki_A_Case_Study_of_a_DNS-Based_Discovery_Service_for_the_Internet_of_Things?el=1_x_8&enrichId=rgreq-d4389bef4b2205cb5e6d1eb0640625d5-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU5MTg5OTtBUzozMzAwNjA1NzkwMDAzMjJAMTQ1NTcwMzk4MjY2MQ==
https://www.researchgate.net/publication/262424890_Bonjour_Contiki_A_Case_Study_of_a_DNS-Based_Discovery_Service_for_the_Internet_of_Things?el=1_x_8&enrichId=rgreq-d4389bef4b2205cb5e6d1eb0640625d5-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU5MTg5OTtBUzozMzAwNjA1NzkwMDAzMjJAMTQ1NTcwMzk4MjY2MQ==
https://www.researchgate.net/publication/231181329_Facilitating_Sensor_Deployment_Discovery_and_Resource_Access_Using_Embedded_Web_Services?el=1_x_8&enrichId=rgreq-d4389bef4b2205cb5e6d1eb0640625d5-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU5MTg5OTtBUzozMzAwNjA1NzkwMDAzMjJAMTQ1NTcwMzk4MjY2MQ==
https://www.researchgate.net/publication/231181329_Facilitating_Sensor_Deployment_Discovery_and_Resource_Access_Using_Embedded_Web_Services?el=1_x_8&enrichId=rgreq-d4389bef4b2205cb5e6d1eb0640625d5-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU5MTg5OTtBUzozMzAwNjA1NzkwMDAzMjJAMTQ1NTcwMzk4MjY2MQ==
https://www.researchgate.net/publication/231181329_Facilitating_Sensor_Deployment_Discovery_and_Resource_Access_Using_Embedded_Web_Services?el=1_x_8&enrichId=rgreq-d4389bef4b2205cb5e6d1eb0640625d5-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU5MTg5OTtBUzozMzAwNjA1NzkwMDAzMjJAMTQ1NTcwMzk4MjY2MQ==
https://www.researchgate.net/publication/231181329_Facilitating_Sensor_Deployment_Discovery_and_Resource_Access_Using_Embedded_Web_Services?el=1_x_8&enrichId=rgreq-d4389bef4b2205cb5e6d1eb0640625d5-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU5MTg5OTtBUzozMzAwNjA1NzkwMDAzMjJAMTQ1NTcwMzk4MjY2MQ==
https://www.researchgate.net/publication/231181329_Facilitating_Sensor_Deployment_Discovery_and_Resource_Access_Using_Embedded_Web_Services?el=1_x_8&enrichId=rgreq-d4389bef4b2205cb5e6d1eb0640625d5-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU5MTg5OTtBUzozMzAwNjA1NzkwMDAzMjJAMTQ1NTcwMzk4MjY2MQ==
https://www.researchgate.net/publication/288611338_Resource_and_Service_Discovery?el=1_x_8&enrichId=rgreq-d4389bef4b2205cb5e6d1eb0640625d5-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU5MTg5OTtBUzozMzAwNjA1NzkwMDAzMjJAMTQ1NTcwMzk4MjY2MQ==
https://www.researchgate.net/publication/288611338_Resource_and_Service_Discovery?el=1_x_8&enrichId=rgreq-d4389bef4b2205cb5e6d1eb0640625d5-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU5MTg5OTtBUzozMzAwNjA1NzkwMDAzMjJAMTQ1NTcwMzk4MjY2MQ==
https://www.researchgate.net/publication/288611338_Resource_and_Service_Discovery?el=1_x_8&enrichId=rgreq-d4389bef4b2205cb5e6d1eb0640625d5-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU5MTg5OTtBUzozMzAwNjA1NzkwMDAzMjJAMTQ1NTcwMzk4MjY2MQ==
https://www.researchgate.net/publication/288611338_Resource_and_Service_Discovery?el=1_x_8&enrichId=rgreq-d4389bef4b2205cb5e6d1eb0640625d5-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU5MTg5OTtBUzozMzAwNjA1NzkwMDAzMjJAMTQ1NTcwMzk4MjY2MQ==
https://www.researchgate.net/publication/247523569_Simple_Service_Discovery_Protocol10_Operating_without_on_Arbiter?el=1_x_8&enrichId=rgreq-d4389bef4b2205cb5e6d1eb0640625d5-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU5MTg5OTtBUzozMzAwNjA1NzkwMDAzMjJAMTQ1NTcwMzk4MjY2MQ==
https://www.researchgate.net/publication/247523569_Simple_Service_Discovery_Protocol10_Operating_without_on_Arbiter?el=1_x_8&enrichId=rgreq-d4389bef4b2205cb5e6d1eb0640625d5-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU5MTg5OTtBUzozMzAwNjA1NzkwMDAzMjJAMTQ1NTcwMzk4MjY2MQ==
https://www.researchgate.net/publication/247523569_Simple_Service_Discovery_Protocol10_Operating_without_on_Arbiter?el=1_x_8&enrichId=rgreq-d4389bef4b2205cb5e6d1eb0640625d5-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU5MTg5OTtBUzozMzAwNjA1NzkwMDAzMjJAMTQ1NTcwMzk4MjY2MQ==
https://www.researchgate.net/publication/238758003_A_universal_algorithm_for_data_compression?el=1_x_8&enrichId=rgreq-d4389bef4b2205cb5e6d1eb0640625d5-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU5MTg5OTtBUzozMzAwNjA1NzkwMDAzMjJAMTQ1NTcwMzk4MjY2MQ==
https://www.researchgate.net/publication/238758003_A_universal_algorithm_for_data_compression?el=1_x_8&enrichId=rgreq-d4389bef4b2205cb5e6d1eb0640625d5-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU5MTg5OTtBUzozMzAwNjA1NzkwMDAzMjJAMTQ1NTcwMzk4MjY2MQ==
https://www.researchgate.net/publication/238758003_A_universal_algorithm_for_data_compression?el=1_x_8&enrichId=rgreq-d4389bef4b2205cb5e6d1eb0640625d5-XXX&enrichSource=Y292ZXJQYWdlOzI2NDU5MTg5OTtBUzozMzAwNjA1NzkwMDAzMjJAMTQ1NTcwMzk4MjY2MQ==
https://www.researchgate.net/publication/264591899

