
PyFUNS: A Python Framework

for Ubiquitous Networked Sensors

Stefano Bocchino1, Szymon Fedor2,�, and Matteo Petracca3

1 Scuola Superiore Sant’Anna, Pisa, Italy
s.bocchino@sssup.it

2 United Technologies Research Centre Ireland, Ltd. Cork, Republic Of Ireland
3 National Inter-University Consortium for Telecommunications, Pisa, Italy

Abstract. In recent years Wireless Sensor Networks (WSNs) have been
deployed in wide range of applications from the health and environment
monitoring to building and industrial control. However, the pace of preva-
lence of WSN is slower than anticipated by the research community due
to several reasons including required embedded systems expertise for de-
veloping and deploying WSNs; use of proprietary protocols; and limits in
scalability and reliability. In this paper we propose PyFUNS (Python-
based Framework for Ubiquitous Networked Sensors) to address these
challenges. PyFUNS handles low level and networking functionalities,
using the services provided by Contiki, and leaves to the user only the
task of application development in the form of Python scripts. This ap-
proach reduces required expertise in embedded systems to develop WSN
based applications. PyFUNS also uses 6LoWPAN and CoAP standard
protocols to enable interoperability and ease of integration with other
systems, pursuing the Internet of Things vision. Through a real imple-
mentation of PyFUNS in two constrained platforms we proved its fea-
sibility in mote devices, as well as its performance in terms of control
delay, energy consumption and network traffic in several network topolo-
gies. As it is possible with PyFUNS to easily compare performance of
different deployments of distributed application, PyFUNS can be used
to identify optimal design of distributed application.

1 Introduction

Research in Wireless Sensor Networks (WSNs) has started over a decade ago with
great enthusiasm and community expectations to revolutionize our daily life. In
those years WSNs have been described as ”distributed systems of numerous
smart sensors and actuators connecting computational capabilities to the phys-
ical world which have the potential to revolutionize a wide array of application
areas by providing an unprecedented density and fidelity of instrumentation”.
Since the first testbeds, numerous deployments of WSNs have been described
for a wide range of applications (e.g., climatic monitoring, structural monitoring

� Szymon Fedor is currently affiliated with MIT Media Lab.

T. Abdelzaher et al. (Eds.): EWSN 2015, LNCS 8965, pp. 1–18, 2015.
c© Springer International Publishing Switzerland 2015

2 S. Bocchino, S. Fedor, and M. Petracca

of building), with the aim of introducing enhancements, and underlining open
issues in the WSNs research field.

After numerous deployments in research projects, WSNs are nowadays reach-
ing the industrial and consumer markets for large scale deployments. As matter
of example it is possible to cite the GINSENG and SmartSantander projects
where the potential of WSNs have been proved through real large scale de-
ployments. Distributed smart sensors able to interact with the physical world
exchanging data through wireless communications are nowadays considered the
key components in the envisioned Smart City scenario.

However, to reach a wide adoption of the WSNs in several domains still several
limitations persist. In this respect some of the main issues are: interoperability,
ease of reprogramming and reliability. New generation of standards for WSN en-
ables interoperability with Internet world (using IP and HTTP-type of protocols)
and they need to be adopted in future smart sensors in order to reduce required
effort for integration of WSN with other systems. The ease of reprogramming
is a main requirement to be taken into account in large scale systems where
the application logic must be changed remotely and without physical access to
nodes. Network reliability is another key point to consider, in fact, this issue
affects the real capability of the WSN to sense and interact with the physical
world. Single point of failure must be avoided in order to prevent the possibility
of losing data from several devices deployed in the field.

In respect of the above mentioned issues some progress has been made in WSN
interoperability. In particular, it has been improved by adopting low level stan-
dard protocols (e.g., IEEE802.15.4), and by adapting IPv6 to the WSN scenario,
thus really enabling the so called Internet of Things (IoT) vision. The IPv6 for
WSN (i.e., 6LoWPAN) is only the first step towards a global interoperability,
further improvements have been reached by enabling HTTP-based transactions
in WSNs. CoAP is nowadays a standard protocol solution to enable the REST-
ful architecture in IoT-based WSNs. Progress has also been made in facilitating
nodes reprogramming and programming although the proposed approaches are
either not so easy, limited to a specific scope, and not really suitable for con-
strained devices such as those used in WSNs. In this direction a very promising
and challenging approach is that following a virtual machine based design where
Python scripts can be installed through RESTful transactions.

To address all the above mentioned issues we propose PyFUNS, a Python
framework for ubiquitous sensor networks. By leveraging on IoT-based protocols
(i.e., 6LoWPAN and CoAP) PyFUNS guarantees a higher interoperability and
reliability with respect to old-style WSNs. Moreover, PyFUNS enables ease of
reprogramming by introducing a virtual machine design based on Pymite, a
reduced Python virtual machine for embedded systems.

The rest of the paper is structured as follows. Related works are described
in Section 2, followed by the design of PyFUNS framework in Section 3. In
Section 4 PyFUNS performance is presented in various network topologies and
distributed application configurations. Section 5 concludes the paper.

A Python Framework for Ubiquitous Networked Sensors 3

2 Related Work

PyFUNS provides a number of features and several relevant solutions which
have been described in WSN literature. We have divided them into (i) techniques
for remote reprogramming, and (ii) frameworks enabling easier programming.

2.1 Techniques for Remote Reprogramming of WSNs

System Reprogramming. Such a method consists of replacing the node full
firmware. It is very inefficient because even a minor application change requires
reloading node binary image. Therefore they require more power and time to
reprogram a node than other approaches in which only a reduced set of mod-
ules or functions is modified. Moreover, during the updating process, the new
firmware must be stored in an external flash memory before being copied into
the internal flash memory when the system restarts. Therefore, the nodes must
have available external flash to store full software image. System level repro-
gramming technique are used in some existing WSN monolithic operating sys-
tems (e.g., TinyOS [HC1]) in which the whole application consists of a single
image file.

Modular Reprogramming. According to this approach the node applica-
tion is composed of independent, re-loadable modules. Contiki [DG1] is an ex-
ample of a modular system which consists of two main components: system
core and loaded program. The Contiki Core, with the boot loader exception,
is a non-reprogrammable component. Therefore, any change in the code of the
kernel, program loader, symbol table and communication interfaces is not sup-
ported. However, enhanced functionalities (e.g., file system support, shell sup-
port, power management) are loaded modules and are reprogrammable. The
modular reprogramming is suitable for over-the-air reprogramming. Unlike the
monolithic method, any system change is local, only the updated modules need
to be transmitted. However, a large-memory footprint and slow system execution
are disadvantages of any modular system. There are also other solutions imple-
menting modular reprogramming (e.g., Dynamic TinyOS [MA1], LiteOS [CA1],
RETOS [HS1]), similarly to Contiki their use requires embedded system experts.

Virtual Machine. In Virtual Machine (VM) based WSN, every node runs
an instance of the virtual machine. The VM is used for the execution of both
on-network applications and byte code instructions. In the literature there are
several VM based approaches proposed for WSN [LC1][SC1]. Mate [LC1] is a
VM built on TinyOS which uses the concept of capsules - a small set of high level
primitives of up to 23 bytes. Mate-based applications are composed of several
capsules which can propagate throughout the network to deliver an objective.
Another VM for WSN is Squawk [SC1], a scale-down version of Java VM that
runs without an OS on memory constrained devices. Squawk allows deployment

4 S. Bocchino, S. Fedor, and M. Petracca

and execution of multiple, isolated applications on a node. The use of a VM-based
approach requires sensor nodes with improved resources with respect to well-
known target platforms. This is because the virtual machine could be demanding
in terms of CPU and memory. Considering the general trend in providing sensor
nodes with higher performance at lower costs, the VM approach can be nowadays
considered an effective and powerful solution in WSNs.

Differential. The use of a differential reprogramming is mainly based on the
use of code patches: a patch is generated using the difference between the old
and the updated program. Rsync [TM1] is a differential update scheme, and
its functionalities has been demonstrated in WSNs [JC1]. As working principle,
Rsync divides the program into different blocks and calculates their hash values.
The evaluated hash values are then matched to determine the block insertion,
deletion, or modification. There are many other examples of differential repro-
gramming systems [KP1][RL1], and in general it has been shown that the size of
the deltas produced by the differential-based approaches is very small compared
to the full binary image. However, most of them poorly perform when there is a
change of both program and variable layout. This is because such update requires
full flash memory writing, and large amount of additional external flash memory.
Differential solutions can be easily used only by embedded system experts.

2.2 Frameworks Enabling Easier Programming of WSN

Many solutions for enabling an easier WSN programming have been described
in the literature [MP1]. They were designed with different objectives, including
energy-efficiency, scalability, failure-resilience or collaborative data processing.
In this respect it must be underlined that one of PyFUNS main goals is to
reduce required expertise in embedded systems for programming WSNs, as this
has been previously identified by domain experts [MD1] as one of the major
barriers for deploying WSNs. In that study the authors implemented the BASIC
programming language for sensor networks and conducted a user study with
novice programmers. Half of users with no previous programming experience
of any kind were able to program simple network tasks using developed BASIC
programs while only 0-17% could do so in TinyScript. Therefore the authors con-
cluded that current WSN languages require knowledge of either very low-level
systems development (including the details of sensor hardware and embedded
system design), or high-level programming concepts and abstractions that are
not obvious to most application domain experts. And because application do-
main experts have little programming experience, most of which is with simple
single-threaded imperative programmingmodels, the authors have ported a small
BASIC interpreter to a WSN platform. Authors motivations are coherent with
ours although our solution provides more features (e.g., interoperability due to
IP and CoAP protocols) and is based on Python interpreter.

A Python Framework for Ubiquitous Networked Sensors 5

Recently several publications [AP1][C1] described solutions to programWSNs
in Python language, due to its popularity and ease-of-use. In fact, according
to [P1], Python requires no more than half as much time as writing in C, and it
appears to be more intuitive with respect to C for new students [F1]. Regarding
previously cited Python-based solutions, they must be considered at the early
stage of development and incomplete to be used nowadays in real applications,
though the most promising in this respect is T-Res. In fact, T-Res enables pro-
gramming of the node to execute simple data-processing tasks performing the
following actions: (i) monitoring one or more resources, (ii) executing some pro-
cessing on their values, and (iii) sending the resulting output to other resources.
The main lack of T-Res is in the possibility of monitor resources only: a method
to retrieve the current resource state by using Python scripts is not supported.

3 PyFUNS Design

Having identified the limitations of literature of systems aiming at enabling
remote reprogramming and an easier programming in WSNs, we have designed
PyFUNS, a framework that can be used in a easy way to reprogramWSNs. Our
framework leaves to the user only the application development task in the form
of Python scripts, while abstracting low level and networking functionalities.

3.1 Dynamic Services over WSN

Traditional WSNs enable the development and deployment of pervasive networks
aiming at providing many simple services, such as the environmental monitoring
or the basic actuation control through basic operations. With the introduction of
the IPv6 over Low power Wireless Personal Area Networks (6LoWPAN) protocol
and Constrained Application Protocol (CoAP), following the IoT vision, WSNs
have acquired enough resources to accomplish more complex services, such as
the capability of exposing equipped sensors in Internet to perform automatic
control operations. The next natural step in the WSNs domain is to build a
smart management of dynamic services, thus enabling the possibility of remotely
reprogramming the services provided by an IoT-based WSN.

In general terms a service provided by a WSN is a set of operations to be
performed to accomplish a specific task. For instance, a service can be the auto-
matic light control in a room and the operations to be performed are: (i) check
the light value periodically, (ii) check the presence of people in the room, (iii)
switch on the lamp while setting the power according to the desired light value,
and (iv) switch off the lamp when people leave the room.

As previously stated, PyFUNS enables the management of dynamic services
in WSNs. In the rest of paper we follow the aforementioned definition of service
(i.e., a set of operations) calling the operations to be performed applications.

6 S. Bocchino, S. Fedor, and M. Petracca

3.2 Application Components

An application deployed on a sensor node has several components:

– Name: string of characters that uniquely identifies the application;

– Period: it is related to the periodicity of the application execution. Values
bigger than zero mean periodicity, equal to zero is for one time executions,
while less than zero mean application blocked waiting for an answer. Appli-
cation flow changes based on the Period value;

– Timer: used for periodic applications, it fires when executing the application;

– State: indicates the current state of the application in its internal Finite
State Machine (FSM);

– Script: it contains the Python byte code performing the specific task which
the application has to provide;

– Variables: list of variables required to store data to be exchanged among
different scripts of the same application or among different applications;

– Requests: list of active requests. A request is used to retrieve the current
representation of a resource through network messages. Each request is as-
sociated to both a callback function, called when a reply is received, and a
variable, which is used to store the received data.

To the end of building an abstract framework that allows to implement
applications able to perform data communication through the network (e.g.,
request/reply paradigm), we decomposed the application in three sub-scripts:
PreScript (optional), MainScript (mandatory) and PostScript (optional). Pre-
Script allows to send data request messages to a specific node in the network,
and the answer will be processed in the MainScript. Moreover, it allows to set
up the application environment (e.g., to create the variables required), and to
retrieve the resource representation. PostScript is executed when the applica-
tion has been stopped, and is mainly used to clean the application environment
(e.g., to delete active requests). PreScript runs once at the application start,
whereas PostScript runs once at the application stop. MainScript is the only
mandatory byte code to be installed on the nodes, and represents the applica-
tion core. It can be run once or several times according to the Period value.
The MainScript execution can be triggered by a periodic event, the expiration
of a timer, or by a sporadic event, the reception of a message. Fig. 1.a illustrates
the script flow for an application using all the three described scripts.

3.3 Application Life-Cycle

The FSM model has been used to implement the application life-cycle, that can
be dynamically installed, started, stopped, updated and uninstalled. To enable
the aforementioned operations, five different states have been defined: (i) NEW,
all the memory required to store the application structure has been allocated
successfully; (ii) INSTALLED, scripts have been installed on the node; (iii) RE-
SOLVED, application is ready to execute; (iv) RUNNING, application is active

A Python Framework for Ubiquitous Networked Sensors 7

PostScript

PreScript

MainScript

UNINSTALLED

RESOLVED

NEW

INSTALLED

RUNNING

install

checkupdate

un
in
st
al
l

uninstall

start

stop
runun

in
st
al
l

(a) (b)

Fig. 1. (a) Scripts flow chart. (b) Application finite state machine.

and performs its operations; and (v) UNINSTALLED, the application struc-
ture has been deleted and the memory has been released. Fig. 1.b depicts the
application life-cycle and the possible transitions among states.

The application life starts in the NEW state, in which the necessary memory
is allocated to store the components described in Section 3.2. All the compo-
nents are set to a default value, except for the name which is filled when the
application is created. In the NEW state it is possible to install PreScript, Main-
Script and PostScript on the node. As previously statedMainScript is mandatory
for each application and installing it implies a change of state to INSTALLED.
In the NEW state it has been enabled the possibility to uninstall the applica-
tion through a defined uninstall event. In the INSTALLED state all necessary
components for the application are set, even though they are still waiting for
a control check aiming at verifying the compatibility among scripts (e.g., check
scripts version). The check is triggered by a defined check event, and in case all
the tests are passed, the state changes to RESOLVED. Also in the INSTALLED
state it is possible to trigger an uninstall event to delete the application. Once
the application reaches the RESOLVED state it has been successfully checked
and it is ready to be executed. Three different events can be triggered from this
state: (i) start, to run the application, PreScript is executed in case it is present,
otherwise MainScript is interpreted, as result the state moves to RUNNING; (ii)
update, to perform any changes concerning the scripts (e.g., install, update or
delete scripts on the node), in this case the state moves to INSTALLED and
the check compatibility on the new installed scripts must be redone; and (iii)
uninstall, to remove the whole application and release the memory used by the
application, next triggered state is UNINSTALLED. In RUNNING state the ap-
plication can be executed one or many times according to the Period, and can be
stopped through a dedicated stop event. PostScript, if present, is executed during
the transition from RUNNING to RESOLVED. Last state is UNINSTALLED
where the application is deleted from the node. Table 1 summarizes the state
transitions of the above described FSM.

8 S. Bocchino, S. Fedor, and M. Petracca

Table 1. Application state transition

CurrentState Input fNextState Output

NEW install INSTALLED At least MainScript has been installed
uninstall UNINSTALLED Application deleted

INSTALLED check RESOLVED Application ready to execute
uninstall UNINSTALLED Application deleted

RESOLVED start RUNNING PreScript executed, if installed
update INSTALLED Changes in installed scripts
uninstall UNINSTALLED Application deleted

RUNNING run RUNNING None
stop RESOLVED PostScript executed, if installed

3.4 Application Flow

As mentioned in Section 3.2, the application flow, in particular when Main-
Script is executed, depends on the value of the application period. Two different
period categories have been defined: period equal to zero when MainScript runs
one time, and period not equal to zero when MainScript can run zero, one or
many times. Fig. 2 shows different flow chart depending on the value of period,
Fig. 2.a is for the first category, while Fig. 2.b and Fig. 2.c for the second.

PostScript

PreScript

MainScript
run

start

stop

(a)

run

PreScript

start

WAIT

MainScript PostScriptstop

stop

(b)

PreScript
start

WAIT

MainScript

PostScript
stop

run

stop

(c)

Fig. 2. Script flow chart for period equal to zero (a), period not equal to zero (b) and
period less than zero, particular implementation (c)

In case of period equal to zero (Fig. 2.a), the application goes from Pre-
Script to PostScript directly, running MainScript one time. It is not possible
to stop the application once it is started. This setting of period is useful for
applications changing the resource representation only one time.

With period not equal to zero (Fig. 2.b), after PreScript, the application waits
for an event to continue its execution. We have defined two types of events that
trigger MainScript: periodic and sporadic. Periodic applications have a period
greater than zero and they wait the timer expiration before to interpret Main-
Script. This setting is useful to implement applications changing the resource
representation periodically. For sporadic applications the period is less than zero
and MainScript is called when a sporadic event happens (e.g., message received).

A Python Framework for Ubiquitous Networked Sensors 9

This type of setting is useful to implement applications that perform activities
when observed resources change. A particular application flow based on a period
less than zero has been implemented, Fig. 2.c, to provide applications able to
run MainScript once after resources representation are retrieved.

3.5 Application RESTful Interface

The goal of PyFUNS is to enable easy management (in terms of parameter
reconfiguration and code deployment) of dynamic application installed in ubiq-
uitous WSNs. To reach a seamless integration of the framework in motes it is
necessary to abstract the application and its attributes. This can be done by us-
ing the REST paradigm in the context of IoT-based WSNs, or in other words by
using the CoAP protocol, thus allowing sensor nodes to abstract resources and
run embedded web services. Abstracting application and its attributes as CoAP
resources enables the use of well known HTTP methods, GET, PUT, POST and
DELETE, to administer code installed in a WSN. Moreover management of the
application, (e.g., start or stop) can be performed by a user through a web site,
or by another application through simple CoAP messages.

As described in Section 3.2, an application is defined by its components which
are managed in PyFUNS as sub-resources of /apps. The resulting application
structure is shown in Table 2. Resource /apps is created statically during the
start up phase. This resource is the container of all applications installed on the
node and it can be managed through CoAP methods to list currently installed
applications and check their validity. The methods of /[app name] provide the
services to create/delete a specific application, retrieve the current state of the
application, and start/stop its execution. The /[app name] resource and its sub-
resources are created by allocating the required memory only once, when the
application is installed. The use of CoAP methods to manage the execution
of a specific application (start/stop) enables the possibility to install on a node
several applications related to each other in order to implement complex services.

Resource /period represents the current application period value, and must
be set following the rules described in Section 3.4. A set of methods are provided

Table 2. The structure of an application resource

/apps # list currently installed apps [GET]

check a specific app [POST]

/[app name] # retrieve the application state [GET]

create/delete a specific app [PUT|DELETE]

start/stop a specific app [POST]

/period # retrieve/update the period [GET|PUT]

/preScript # retrieve/update/delete the PreScript [GET|PUT|DELETE]

/version # retrieve/update the PreScript version [GET|PUT]

/mainScript # retrieve/update/delete the MainScript [GET|PUT|DELETE]

/version # retrieve/update the MainScript version [GET|PUT]

/postScript # retrieve/update/delete the PostScript [GET|PUT|DELETE]

/version # retrieve/update the PostScript version [GET|PUT]

/variables # list currently variables [GET]

/[var name] # retrieve/observe/update the value [GET|PUT]

10 S. Bocchino, S. Fedor, and M. Petracca

to manage the scripts: for each script, PreScript, MainScript and PostScript,
it is possible to retrieve/update/delete the byte code and retrieve/update the
version of them. /variables resource is the container of the variables used by
the application to accomplish its functionalities. By interacting with it, the list
of current variables can be retrieved. For each variable a new resource is created
and it is possible to retrieve/update the value. The purpose of this resource
is to exchange data among different scripts of the same application, or among
different applications. Each /[var name] resource can be observed, even by other
applications, enabling a smart functionality to be used in complex systems.

3.6 PyFUNS Implementation

Native code replacement and loadable modules on the one hand enable services
updates, on the other hand imply a higher cost since downloaded modules are
more coarse-grained compared to a virtual machine application. Moreover, these
methods require to maintain information about the software version in each node,
and the implementation is hardware dependent. To fully decouple applications
from the sensing infrastructure we use a virtual machine to run the applications.

Most of the virtual machine based approaches enable highly efficient updates:
low cost for transmitting new code and abstraction from the platform. The
software updates sent from front-end-device to different nodes (based on differ-
ent platform) are always the same. However, VMs introduce overhead in term
of memory and computational overhead, which is overcome by more powerful
devices present on the market. Python, Java and JavaScript are the most com-
mon interpreted languages used for virtual machine approaches with substan-
tial libraries of pre-written code. The last two are object-oriented languages;
whereas Python supports multiple programming paradigms, including object-
oriented, imperative and functional programming styles. JavaScript script is
too big to be installed in a WSN node and it cannot be compiled into byte
code. Using byte code for reprogramming leads to an extremely powerful sys-
tem in which microcontrollers can be programmed interactively without the
typical compile/link/flash/run cycle. Both Python and Java allow for platform-
independent processing functions that can be freely exchanged among nodes,
but we preferred the former approach because, as discussed in Section 2.1, pro-
gramming in Python is really simple and supports multiple programming styles.

We implemented PyFUNS on top of Contiki OS [DG1] that provides native
support for 6LoWPAN and CoAP. A Python interpreter has been ported to the
target operating system to enable script interpretation on constrained devices.
We ported PyMite [PM1], a reduced Python interpreter that runs a significant
subset of the Python language on microcontrollers with very few resources.

PyFUNS provides a set of APIs, summarized in Tab. 3, that can be used
in Python scripts to implement applications. Such APIs allow: (i) to manage
variables (create/delete/get/set); (ii) to send a generic CoAP message specify-
ing the method (GET, POST, PUT, DELETE), the node address, the URI of
target resource, the eventually payload and the eventually variable where store
the result of the operation; (iii) to set/unset observation to a specific resource

A Python Framework for Ubiquitous Networked Sensors 11

defined by its IPv6 address and URI; and finally (iv) to stop the execution of the
application. The IPv6 address parameters are expressed without the prefix (e.g.,
[0,0,0,2]), as we have provided the messages exchanged among different applica-
tions that can be performed only inside the same network. Notice that sendMsg
and obs functions have a parameter var to be associated with the request. In
case of var is not present, it is automatically created inside the functions.

Table 3. PyFUNS APIs

Function Description

newVar(name, value) Create new variable
delVar(name) Delete variable
getVar(name) Get variable value
setVar(name) Set variable value
sendMsg(met, addr, uri, payload, var) Send CoAP message
obs(addr, uri, var) Send CoAP observe
delObs(addr, uri) Delete CoAP observe
exit() Stop the application

A prerequisite of PyFUNS is that each node runs a web service to expose
its resources, since the framework uses CoAP methods to interact with them.
Instead, PyFUNS framework can be installed only on a subset of nodes.

3.7 Example of Usage

To evaluate PyFUNS performance, we implemented a Security service applica-
tion which has the purpose to detect any motion in a room and trigger an alarm.
In such example the network is composed of three PIR sensors, on nodes 2, 3 and
4 with the URI coap://[aaaa::2]/sen/pir, coap://[aaaa::3] /sen/pir and
coap://[aaaa::4]/sen/pir respectively, and one alarm, on node 5 with URI
coap://[aaaa::5]/act/alarm. The application implementing the service can
be installed in any node inside the network using the RESTful interface defined
in Section 3.5. The intent of Security service is to observe the PIR sensors, and
trigger the alarm whenever a notification of motion detection is received. To im-
plement such envisioned application we need to write and install the PreScript,
MainScript and PostScript. PreScript, Listing 1.1, issues OBSERVE messages to
all three PIR sensors and associates the requests to variables, p1, p2 and p3, used
to maintain the representation of the sensors. Since the MainScript runs when-
ever a notification is received, the period of the application is set with a number
less than zero: execute MainScript after a sporadic event happens (Fig. 2.c).

Listing 1.1. The PreScript of Security application

from pyfuns import ∗
obs ([0 , 0 , 0 , 2] , ” sen/ p i r ” , ”p1”)
obs ([0 , 0 , 0 , 3] , ” sen/ p i r ” , ”p2”)
obs ([0 , 0 , 0 , 4] , ” sen/ p i r ” , ”p3”)

12 S. Bocchino, S. Fedor, and M. Petracca

MainScript(Listing 1.2) is called whenever a notification from observed sensors
is received. The operations carried out are very simple: retrieve the representa-
tion of the variable associated to each PIR sensors and issue a POST request
to coap://[aaaa::5]/act/alarm to trigger the alarm, if one of the variables is
equal to one, or to stop the alarm otherwise. Listing 1.3 shows the Python script
related to PostScript. It sends messages to the PIR resources in order to delete
the subscription when the application has stopped. The scrips byte code to be
installed on nodes can be obtained by compiling the presented Python scripts.

Listing 1.2. The MainScript of Security application
from pyfuns import ∗
i f getVar (”p1”) or getVar (”p2”) or getVar (”p3”) :

sendMsg (2 , [0 , 0 , 0 , 5] , ” ac t /alarm” , ”1”)
else :

sendMsg (2 , [0 , 0 , 0 , 5] , ” ac t /alarm” , ”0”)

Listing 1.3. The PostScript of Security application
from pyfuns import ∗
delObs ([0 , 0 , 0 , 2] , ” sen/ p i r ”)
delObs ([0 , 0 , 0 , 3] , ” sen/ p i r ”)
delObs ([0 , 0 , 0 , 4] , ” sen/ p i r ”)

4 Performance Evaluation

To evaluatePyFUNS performance we implemented it on top of Contiki OS by in-
tegrating/porting PyMite on two constrained platforms: (i) WiSMote, equipped
with a MSP430F5 microcontroller having 16 kB of RAM and 256 kB of flash, and
(ii) CC2538dk, equipped with an ARM CortexTM M3 microcontroller having 32
kB of RAM and 512 kB of flash. In the rest of the section we first prove the feasibil-
ity of PyFUNS by checking that in both selected target platforms the performed
implementation requires flash memory and RAM which are within the physical
limits. Then we evaluatePyFUNS overhead in terms of run time and energy con-
sumption. Finally we present an extensive evaluation of PyFUNS framework by
implementing one real service: Security. To deploy the system bases on real plat-
form, and test it in a real life scenario, we integrated: (i) sensors, such as PIRs, and
(ii) actuators, such as alarms, on target platforms.

4.1 Flash and RAM Requirements

To assess the possibility of deplying PyFUNS on the selected devices we mea-
sured both the flash and RAM occupation. Table 4 shows the memory occupied
by the software for both platforms, the WiSMote and the CC2538dk. The soft-
ware installed on each WSN node includes the Contiki OS, the PyMite inter-
preter, PyFUNS, plus the possibly required memory to install two PyFUNS
applications. In case of WiSMote platform the whole firmware occupies 93% of
the available RAM and 38% of the available flash. In case of the CC2538dk
platform the firmware requires the 62% of the available RAM and the 19% of

A Python Framework for Ubiquitous Networked Sensors 13

Table 4. Code size and RAM requirements for a WiSMote and CC2538dk devices

Nodetype RAM [bytes] F lash[bytes]

WiSMote 14 918 (93%) 98 077 (38%)
CC2538dk 19 904 (62%) 96 732 (19%)

the available flash. Such a notable occupation of memory, especially RAM, is
mainly due to PyMite, which alone requires 45 kB of flash and 8 kB of RAM.
In order to reduce the RAM occupation we are planning to implement a tool to
store Python byte codes into the flash. The current version of PyFUNS stores
the Python scripts in RAM, which is usually more constrained comparing to the
flash memory.

4.2 Native Code versus Python Script

PyFUNS overhead in terms of run time and energy consumption has been eval-
uated with respect to a native code solution. Both performance figures have
been measured by using two different set of benchmarks: (i) five test applica-
tions implementing algorithms showing a different complexity level; (ii) three
applications implementing CoAP methods. Each benchmark has been executed
by considering a C language based native code solution, and its Python version.

The first benchmark set is composed of five algorithms, characterized by dif-
ferent complexity levels, and chosen from ”dada’s perl lab”1. More specifically,
we selected the following algorithms, listed in function of their complexity (from
lower to higher): (i) ACK - Ackermann’s Function(3, N) that is a classic recur-
sive function with N=3; (ii) FIB - Fibonacci Numbers(N) that computes the
Fibonacci sequence with N=17; (iii) MAT - Matrix Multiplication(N) that per-
forms the multiplication between two matrices with size 5 and N=10; (iv) HEAP
- Heapsort(N) that sorts a vector with a size N=100 of integer numbers, and ini-
tialized with strictly decreasing value; and (v) MET - Method Calls(N) that
implements activation of class methods using object-oriented style. The second
benchmark test, instead, includes: (i) an application that issues a POST request
to a resource installed in a neighbor node (POST); (ii) an application that is-
sues a POST request to a resource installed in a neighbor node and waits the
acknowledgement message from the resource (POST2); and (iii) an application
that issues a GET request to one resource installed in a neighbor node, waits
the reply, processes it and sends a POST request to another resource installed
in a neighbor node (GET). All performance results are reported in Table 5.

All results have been obtained by running each test 1000 times in Cooja, the
Contiki network simulator. Cooja allows to run the same binary files to be used
on real platforms while enabling a quick testing and debugging of the system. In
the simulator all tests have been performed by using only the WiSMote platform

1 A benchmark comparison of a number of programming languages:
http://dada.perl.it/shootout/craps.html

14 S. Bocchino, S. Fedor, and M. Petracca

Table 5. Performance benchmarks in Cooja

C Python Python/C
T ime(ms) Energy(µJ) T ime(ms) Energy(µJ) T imeratio Energyratio

ACK 4.08 0.029 645.25 4.765 158.1 164.3
FIB 9.95 0.072 1344.84 9.932 135.2 137.9
MAT 5.06 0.037 687.31 5.076 135.8 137.1
HEAP 1.95 0.014 379.68 2.804 194.7 197.7
MET 1.16 0.009 207.28 1.531 178.8 177.2
POST 1.22 0.009 5.35 0.039 4.4 4.3
POST2 8.61 0.328 12.68 0.357 1.4 1.1
GET 17.26 0.604 26.19 0.671 1.5 1.1

(CC2538dk is not supported at time of writing), moreover to prove the Cooja
accuracy we ran also two benchmark tests on a realWiSMote platform. In Table 5
the C and Python columns show the run times and the energy consumption for all
benchmark applications, while the last column labeled as Python/C reports the
ratio between PyFUNS and native code approaches. For the first benchmark set
the time performance penalty of PyMite is between 135 and 195, while showing a
performance gap between 137 and 198 in energy consumption. Such a difference
between C and Python is mainly caused by the extensive use of the heap memory
in PyMite when performing complex operations such as recursive calls. On the
contrary, in CoAP methods tests the run time performance penalty is between
1.5 and 4.4 with an energy consumption performance gap between 1.1 and 4.3.
This is the overhead introduced by PyMite to perform CoAP methods in WSNs,
while enabling a powerful tool providing platform abstraction and reconfigurable
in-network processing that can compensate the overhead. To prove the validity
of the aforementioned results obtained with Cooja simulator, we also ran the
Python version of Ackermann’s Function and POST method on a real WiSMote
platform. The obtained results are reported in Table 6, and they are very similar
to those obtained by using the Cooja simulator.

Table 6. Performance benchmark on WiSMote

T ime(ms) Energy(µJ)

ACK 649.79 4.799
POST 5.52 0.040

4.3 Real Case Evaluation

Performance of a distributed application depends on the network topology and
in-network distribution of application components. We evaluated PyFUNS per-
formance in terms of energy consumption, actuation delay and network traffic,
to provide real services such as the one presented in Section 3.7. The application
components were distributed among the nodes or centrally placed at the border
router. For the energy consumption we considered the overall network consump-
tion. The actuation delay represents the elapsed time between the detection of

A Python Framework for Ubiquitous Networked Sensors 15

the event and the associated actuation, while network traffic measures the total
amount of bytes exchanged in the network. As we want to evaluate the impact
of PyFUNSonly, we take into account only CoAP messages without counting
traffic generated by underlying layers (e.g. RPL messages).

2 4

9

3 5
6

7
8

1

(e)
2 4

9

3 5
6

7
8

1

(f)
2 4

9

3 5
6

7
8

1

(g)
2 4

9

3 5
6

7
8

1

(h)

5

2 4

3
1

(a)

2 4

9
35

6 7

8
1

(b)

6 7

13
89

10 11

12
1

3

4

5

2

(c)

2 4

9

3 5
6

7
8

1

(i)

1

7

11

3

8

12

4

6

10

2

9

13

5

(d)

Fig. 3. Network topologies: star (a-b-c), mesh (d) and tree (e-f-g-h-i)

To avoid impact of the changing environment and measurement overhead of
real world experiments we installed PyFUNS on Cooja simulator. The Security
service was deployed on multi-hop, IoT-based WSN, configured with nine net-
work topologies shown in Fig. 3: three star topologies with 5, 9, and 13 nodes;
one mesh topology with 13 nodes; and 5 tree topologies each one of them with
9 nodes and different transmission links. The power transmission of nodes was
fixed for all the topologies except for the topology from Fig. 3.a which was evalu-
ated also with a higher transmission power. This was done to compare topology
having multi-hop transmissions (Fig. 3.b) with a network having smaller number
of nodes but covering similar geographical area.

For the security service scenario nodes 2, 3 and 4 in Fig. 3 were simulated
with an attached PIR sensor and the node 5 with an attached buzzer. We tested
different placements of security service components as depicted in Table 7.

Table 7. Security Control service deployment configurations

(a) (b) (c)(d) (e)(f)(g)(h)(i)

BR (1) BR (1) BR (1) BR (1)
PIR2 (2) PIR2 (2) PIR2 (2) PIR2 (2)
Alarm (5) Alarm (5) Alarm (5) PIR4 (4)

Node 6 Node 6 Alarm (5)
Node 9 Node 9 Node 6

Node 10 Node 7
Node 13 Node 8

Node 9

Figure 4 shows the energy consumption measurement for all topologies. As
we expected the minimum energy consumption for star topology is when Py-
FUNS application is installed on the Border Router. This is because the amount

16 S. Bocchino, S. Fedor, and M. Petracca

Fig. 4. Energy consumption in star (a-b-c), mesh (d) and in tree (e-f-g-h-i) topologies.
The label on the x-axis indicates in which node the Security application is installed.

x102 x102

Fig. 5. Network traffic in star (a-b-c), mesh (d) and in tree (e-f-g-h-i) topologies. The
label on the x-axis indicates in which node the Security application is installed.

of data exchanged in such configuration is minimum (Fig. 5). In fact, when the
transmission is between nodes distant by more than one hop an additional 6LoW-
PAN header overhead (due to the addressing and hop limit fields) is observed.

However, in case of mesh topology (Fig. 4 right side) the minimum energy
consumption of the overall network is observed when the service is distributed
among the nodes rather than placed on the Border Router. For all topologies it
is the number of transmission hops that plays dominant role in the total amount
of network traffic, and consequently in energy consumption. For instance, in
topology (e) (purple columns) it is possible to see that the energy consumed
when the application is installed in nodes PIR2 and 6 (which are closely located)
is bigger than a centralized approach (application on BR). On the basis of energy
consumption parameter the best choice for (e) (f) (g) is node 8, with a consumed
energy equal to 7.47 mJ, 7.12 mJ and 5.43 mJ respectively, for (h) is node 4 with
5.36 mJ, and for (d) and (i) is node 5 with 5.85 mJ and 7.39 mJ respectively.

We also evaluated delay introduced by the framework in triggering the actua-
tor node when a motion detection event happens. Figure 6 presents the delay for
all topologies, it depends on the number of hops between sensor and actuator.

A Python Framework for Ubiquitous Networked Sensors 17

Fig. 6. Delay time (ms) in star (a-b-c), mesh (d) and in tree (e-f-g-h-i) topologies. The
label on the x-axis indicates in which node the Security application is installed.

5 Conclusions

As WSNs moved from the academic world to the industrial scenario new chal-
lenges have been raised up to reach a wide adoption of the WSNs in several do-
mains. Some of the main issues are: interoperability, ease of reprogramming and
reliability. To address such issues we propose PyFUNS, a Python framework for
ubiquitous sensor networks. By leveraging on IoT-based protocols (i.e., 6LoW-
PAN and CoAP) PyFUNS guarantees a higher interoperability and reliability
with respect to old-style WSNs. Moreover, thanks to its adopted virtual machine
design based on Pymite, a reduced Python interpreter, PyFUNS enables ease
of reprogramming in WSNs. In a real scenario PyFUNS can be used as com-
plementary tool of a framework able to allow users to easily write Python-based
IoT applications (e.g., through a graphical interface) to be remotely installed on
WSN nodes hiding the whole installation process. This feature can be provided
by PyoT, a system for macro-programming and managing IoT-based WSNs.

In the paper we first presented PyFUNS by detailing its design and im-
plementation choices by carefully explaining its usage in building simple and
complex services. Then we evaluated PyFUNS performance considering the
WiSMote and CC2538dk platforms with the aim of proving its feasibility in real
constrained devices, and its overhead in terms of run time and energy consump-
tion with respect to native code solutions. Finally PyFUNS performance in star,
mesh and tree network topologies were evaluated for a Security service by con-
sidering both centralized and distributed application logic solutions. Presented
results, aside of proving PyFUNS feasibility and performance, highlight further
possible optimization to be investigated: RAM memory requirement reduction,
scripts execution time and energy consumption, communication failures han-
dling. While RAM memory occupancy can be merely solved by saving Python
scripts in flash and leaving the RAM for regular applications, other optimizations
require a deeper analysis, and they will be addressed in future investigations.

18 S. Bocchino, S. Fedor, and M. Petracca

References

[AP1] Alessandrelli, D., Petracca, M., Pagano, P.: T-Res: Enabling Reconfigurable In-
network Processing in IoT-based WSNs. In: IEEE International Conference on
Distributed Computing in Sensor Systems, pp. 337–344 (2013)

[C1] Carboni, D., Crs Parco Tecnologico Pula: PySense: Python Decorators for Wire-
less Sensor Macroprogramming. In: ICSOFT, pp.165–169 (2010)

[CA1] Cao, Q., Abdelzaher, T., Stankovic, J., He, T.: The LiteOS Operating System:
Towards Unix-Like Abstractions for Wireless Sensor Networks. In: International
Conference on Information Processing in Sensor Networks, pp. 233–244 (2008)

[DG1] Dunkels, A., Gronvall, B., Voigt, T.: Contiki - A Lightweight and Flexible Op-
erating System for Tiny Networked Sensors. In: IEEE International Conference
on Local Computer Networks, pp. 148–157 (2004)

[F1] Fangohr, H.: A comparison of C, Matlab and Python as teaching lan-
guages in engineering. In: International Conference in Computational Science,
pp. 1210–1217 (2004)

[HC1] Hui, J.W., Culler, D.: The Dynamic Behavior of a Data Dissemination Protocol
for Network Programming at Scale. In: International Conference on Embedded
Networked Sensor Systems, pp. 81–84 (2004)

[HS1] Hojung, C., Sukwon, C., Inuk, J., Hyoseung, K., Hyojeong, S., Jaehyun, Y.,
Chanmin, Y.: RETOS: Resilient, Expandable, and Threaded Operating Sys-
tem for Wireless Sensor Networks. In: International Symposium on Information
Processing in Sensor Networks, pp. 148–157 (2007)

[JC1] Jaein, J., Culler, D.: Incremental network programming for wireless sensors. In:
IEEE Communications Society Conference on Sensor and Ad Hoc Communi-
cations and Networks, pp. 25–33 (2004)

[KP1] Koshy, J., Pandey, R.: Remote incremental linking for energy-efficient repro-
gramming of sensor networks. In: European Workshop on Wireless Sensor Net-
works, pp. 354–365 (2005)

[LC1] Levis, P., Culler, D.: Mate: a tiny virtual machine for sensor networks. In:
International Conference on Architectural Support for Programming Languages
and Operating System, pp. 85–95 (2002)

[MA1] Munawar, W., Alizai, M.H., Landsiedel, O., Wehrle, K.: Dynamic TinyOS:
Modular and Transparent Incremental Code-Updates for Sensor Networks. In:
IEEE International Conference on Communications (ICC), pp. 1–6 (2010)

[MD1] Miller, J.S., Dinda, P.A., Dick, R.P.: Evaluating a BASIC Approach to Sensor
Network Node Programming. In: ACM Conference on Embedded Networked
Sensor System, pp. 155–168 (2009)

[MP1] Mottola, L., Picco, G.P.: Programming Wireless Sensor Networks: Fundamental
Concepts and State of the Art. ACM Comput. Surv. 43, 19:1–19:51 (2011)

[P1] Prechelt, L.: An empirical comparison of seven programming languages.
Computer 33, 23–29 (2000)

[PM1] PyMite (2013), http://code.google.com/p/python-on-a-chip/
[RL1] Reijers, N., Langendoen, K.: Efficient Code Distribution in Wireless Sensor

Networks. In: ACM International Conference on Wireless Sensor Networks and
Applications, pp. 60–67 (2003)

[SC1] Simon, D., Cifuentes, C., Cleal, D., Daniels, J., White, D.: Java on the Bare
Metal of Wireless Sensor Devices: The Squawk Java Virtual Machine. In: In-
ternational Conference on Virtual Execution Environments, pp. 78–88 (2006)

[TM1] Tridgell, A., Mackeras, P.: The rsync algorithm (1998),
http://rsync.samba.org/tech_report155-190

http://code.google.com/p/python-on-a-chip/
http://rsync.samba.org/tech_report155-190

	PyFUNS: A Python Framework for Ubiquitous Networked Sensors
	1 Introduction
	2 Related Work
	2.1 Techniques for Remote Reprogramming of WSNs
	2.2 Frameworks Enabling Easier Programming of WSN

	3 PyFUNS Design
	3.1 Dynamic Services over WSN
	3.2 Application Components
	3.3 Application Life-Cycle
	3.4 Application Flow
	3.5 Application RESTful Interface
	3.6 PyFUNS Implementation
	3.7 Example of Usage

	4 Performance Evaluation
	4.1 Flash and RAM Requirements
	4.2 Native Code versus Python Script
	4.3 Real Case Evaluation

	5 Conclusions
	References

