
12th IFIP/IEEE International Symposium on Integrated Network Management 2011

Magneto Approach to QoS Monitoring
Sidath Handurukandel, Szymon Fedorl, Stefan Wallin2, Martin Zach 3

[sidath.handurukande I szymon.fedor]@ericsson.com, stefan. wallin@ltu.se, martin.zach@siemens.com

I Network Management Lab, 2 Lu1ea University of Technology LTU, 3 Siemens AG Austria,
LM Ericsson, Athlone, Ireland Mobile Systems, Skelleftea, Sweden Vienna, Austria

Abstract

Quality of Service (QoS) monitoring of end-user services is an

integral and indispensable part of service management. However

in large, heterogeneous and complex networks where there are

many services, many types of end-user devices, and huge

numbers of subscribers, it is not trivial to monitor QoS and

estimate the status of Service Level Agreements (SLAs).

Furthermore, the overwhelming majority of end-terminals do not

provide precise information about QoS which aggravates the

difficulty of keeping track of SLAs. In this paper, we describe a

solution that combines a number of techniques in a novel and

unique way to overcome the complexity and difficulty of QoS

monitoring. Our solution uses a model driven approach to service

modeling, data mining techniques on small sample sets of

terminal QoS reports (from "smarter" end-user devices), and

network level key performance indicators (N-KPIs) from probes

to address this problem. Service modeling techniques empowered

with a modeling engine and a purpose-built language hide the

complexity of SLA status monitoring. The data mining technique

uses its own engine and learnt data models to estimate QoS values

based on N-KPIs, and feeds the estimated values to the modeling

engine to calculate SLAs. We describe our solution, the prototype

and experimental results in the paper.

Keywords; QoS, SLA, service-modeling, data-mining, terminal

reports, network-KPI, IPTV

I. INTRODUCTION

Currently telecom operators and Internet Service Providers
(ISPs) offer and manage large numbers of services. These
include triple play and quadruple play services (voice, data,
TV, wireless) among other services. In a very competitive
market it is important to monitor the service quality that is
delivered to subscribers and if the Quality of the Service (QoS)
delivered to subscribers is below acceptable levels, corrective
measures should be taken. Otherwise, unsatisfied customers
will churn resulting in loss of business, revenue and reputation.

Service quality monitoring is a very important part of
service management; without knowing the QoS value of a
particular service it is difficult to take the corrective actions that
are necessary to improve the service. However, service quality
monitoring in a large network is a daunting task because of (1)
the large number of subscribers and many services (2) the lack
of precise information about QoS that is necessary (for
example from end-user terminals) (3) the heterogeneity of
services, end-user equipments and network devices that are
used to deliver the service.

In this paper we describe, a QoS monitoring solution that
combines a number of techniques to address the problem of
SLA status monitoring. We use a small sample set of terminal
QoS reports, lower level network performance details and data

978-1-4244-9221-31111$26.00 ©2011 IEEE 209

mining to fmd data models which map lower level network
performance values to the QoS values obtained with QoS
reports. Then we implement service modeling based SLA
status calculations. For users who are not sending QoS reports,
QoS values are estimated from lower level network
performance measurements using constructed data models.
This approach is novel and unique in the way we orchestrate
these techniques. In short, in our solution, we use a service
model based approach in tandem with a data mining approach
to monitor QoS. The model based approach uses a modeling
engine to calculate the status of Service Level Agreements
based on the information it receives from a data mining engine
and other components. The data mining engine uses a small
sample set of QoS values it receives from "smarter" end-user
terminals and network probes to automatically build a so-called
data model which represents relationship between QoS values
and information from the network probes. The data mining
engine then uses this data model to estimate the QoS values for
the other end-user devices that are incapable of producing QoS
valuesl. These estimates are then fed into the service modeling
engine to calculate time indexed SLAs. The QoS value reports
are created using software components that run in end-user
terminals but it is unrealistic to expect that all terminals can or
would be allowed to create QoS reports in a large
heterogeneous network. The estimation method mentioned
above circumvents this problem. Estimation is achieved by
using network probes to extract specific details from the
network that are particularly relevant for particular service
traffic; more specifically we use probes to find values of
network level key performance indicators (N-KPIs). We
describe the details of our solution in next sections.

This work is done as part of the Magneto Celtic Project [1]
of which one of the main research strands is QoS monitoring
using the approach described in this paper. In the Magneto
project context we have developed novel QoS monitoring
solution for IPTV service delivered over RTSP [2] to Home
Area Networks (HANs). Our QoS monitoring solution is
developed and tested in the context of IPTV service in HANs,
but the concept and the solution is general enough to be used in
other contexts. In this paper we show one specific application
of our solution in the domain of IPTV service quality
monitoring that is delivered to HANs.

The structure of the paper is as follows: Section II describes
the context in which we developed our solution -namely the use
of our approach for IPTV service delivery and performance
report collection in Home Area Networks (HANs). Section III
describes a service modeling based approach to monitor and

I as of now overwhelming majority of end-user devices are not
capable of producing QoS reports

calculate SLAs based on the underlying framework that
provides QoS reports/estimates and N-KPIs. Section IV
describes a data mining approach that uses a sample set of
terminal reports and automatically estimates QoS for the rest of
the users and feeds these estimates into modeling engine. In
Section V we describe our prototype and explain the
performance results. The related work is described in Section
VI and Section VII concludes the paper.

II. HOME AREA NETWORK (HAN) MANAGEMENT AND

PERFORMANCE REpORT COLLECTION

A. HAN Management

We have developed and evaluated our solution in the
context of IPTV service that is delivered over RTSP [2] to
Home Area Networks (HANs). Given that IPTV end-user
services are delivered to HANs (that are not directly under the
control of operators' network) it is important to monitor and
manage the service adequately; otherwise due to network
issues, end-user service performance could be impacted
negatively creating unsatisfied end-users. In the Magneto
project we aim to manage the outer-edge of the network so
that:

1) Magneto Enabled Home Gateways (HGs, home gateway
is the intermediate device between the operators network and
HAN such as ADSL router, Cable modem etc.) and other end
user devices (such as Set-top-boxes and laptops) can send
performance reports (e.g., IPTV QoS related and network
performance related as described later in this section) to QoS
monitoring system of the operator's network. From the QoS
monitoring perspective this functionality is important and we
describe these functionalities in this paper. Devices that run

"Magneto" software components are known as Magneto
enabled devices in contrast to other traditional HAN devices.

2) To manage the HAN and devices within the HAN (with
user's consent), Magneto enabled devices including HGs can
be automatically configured based on information from
operator's network management system. These functionalities
of Magneto network are outside the scope of this paper and
they are described in [3].

3) Magneto enabled Home Gateways are smart in the sense,
they can help to manage legacy, less capable devices in HANs
(e.g. simple VoIP phones). We do not describe these
functionalities in this paper.

B. Terminal Reports on QoS

In general, terminal reports (from end-user devices Set-top
boxes and laptops) are used to report various details about
service performance metrics, user behaviour and any other
details that could be useful in managing end-user terminal and
service management. In our solution we use terminal reports
(from "smarter" end-user devices that are capable of creating
and sending such reports) to report the service performance of
IPTV; more specifically we consider computers with installed
the Video LAN Client (VLC) [4] as a video terminal and Set
Top-Boxes (STB) that are capable of creating terminal reports.
In Magneto project, we have extended and adapted VLC client
and a STB platform so that they can create terminal QoS

210

reports about IPTV service. In our solution, the terminal reports
can include:

(i) High level service impairment, more specifically video
impairments. These impairment issues are detected by IPTV
player (application) or video CODEC. In the Magneto solution,
the following video impairments can be detected: (1)
Choppiness (missing frames resulting in a sudden "jump" of
video) (2) frame freezes (picture freezes for a longer time) (3)
A V out of sync issues (audio, video synchronization issues
resulting, for example, in the speaker's lips not being
synchronized with the voice)

Information related to such problems is available to IPTV
players (applications) or CODECs (e.g., in STB). It is very
difficult or sometimes impossible to detect such problems
without the involvement of the player/application or the
CODEC. Since these impairments are related to the quality of
the end-user service (e.g., IPTV end-user service) sent by
terminals (e.g., computing device playing the video or STB),
we refer to them as terminal QoS reports. Although
information related to QoS is always available to the
applicationiCODEC, it is not always possible to get this
information. Not all terminals, applications or CODECs are
capable of sending this information or APIs to access this
information are not implemented. Though it is a small
percentage, some terminals, such as "Magneto enabled" (that
run Magneto software components) are capable of providing
this information. The VLC extension and the extended STB
platform developed in the Magneto project can detect above
mentioned video impairments; once these impairments are
detected QoS reports are sent to operators' QoS monitoring
system. More details about these mechanisms is given in
Section V.

(ii) In addition to the above QoS reports, terminals (end-user
equipment) can report various network level performance
reports. Such network level reports can also be generated from
other network nodes such as Magneto enabled Home gateways
(or even at aggregation nodes in the access networks) that are
capable of collecting and sending such network level
performance reports. We call these network level performance
reports as N-KPI reports and they are described in the
following section.

C. N-KPls and Collection Mechanisms

Network KPIs (N-KPIs) are Key Performance Indicators that
indicate the performance of network links and nodes. We
specifically consider the performance of IP level links. In the
Magneto solution we consider a set of N-KPIs that include: (1)
packet loss (2) jitter (3) delay. These network level
performance values can be observed at the: (1) end-user device
(2) intermediate devices such as Home Gateways, intermediate
routers and other aggregator devices in the access networks. In
Magneto project, we have developed "Probes" software
components that can be deployed in Home Gateways or end
user devices (such as laptops) to collect above mentioned N
KPIs for certain traffic classes such as IPTV. More details
about these "Probes" are given in Section V. In IPTV service a
majority of video service impairment is caused by network
performance problems such as packet loss, jitter and delay.

Since operators are more concerned about the QoS issues
caused by these network problems, in this paper we consider

QoS impairments caused by network issues.

We assume there is a small percentage of devices that send
QoS terminal reports (for example devices provided by the
operator as opposed to user purchased ones or Magneto
enabled devices). We use this small percentage of devices as a
"sample set" in our solution. More precisely we use this sample
set to build a correlation between QoS for a specific service
(e.g., IPTV) and N-KPIs that are collected from various
network equipment (such as HG, intermediate routers,
aggregation nodes etc.). Based on this correlation we estimate

QoS levels of end-user service and then calculate the Service
Level Agreements (SLAs). Next, we briefly describe how we
use the QoS reports, N-KPIs together with a data-mining
engine (for QoS estimation) and modeling engine (for SLA
calculation based on service modeling).

D. Overall Architecture

I

: OoS
I Monitoring
: Backend

I ,.,

Po -----N-KPI- - - - - -:-, •. ---------------
Reports -'bOS Terminal

,,;.
"

Reports

Cannot Create OoS Reports

--- N-KPI Reports OoS Terminal Reports

Figure 1: Overall Architecture ofQoS Monitoring Solution

In Figure 1, we show the overall architecture of the QoS
monitoring solution. The above mentioned QoS terminal
reports (when available) and N-KPIs are fed into the Modeling
Engine and Data-mining engine. The SLA status is calculated
for those terminals that can send QoS reports, based on the QoS
terminal reports from those terminals; these SLAs are useful in
evaluating the overall end-user service quality delivered to
users. The Modeling Engine also calculates the SLAs for
network performance based on the N-KPI it receives; these
SLAs are network connectivity metrics that are useful for
evaluating performance of the network. The N-KPIs are sent
from intermediate nodes such as the HG or routers.

The QoS values and the N-KPIs are forwarded to the Data
Mining Engine and Data-Mining Engine which builds a data
model to map N-KPIs to QoS values. This data model is
periodically updated. The Data-Mining Engine uses the data
model to estimate the QoS values for terminals that cannot send

QoS value reports. These estimates are fed into the Modeling
Engine so that it can calculate the SLA status for terminals that
cannot send QoS reports. Both SLA status and estimated QoS

211

values are sent to the Performance Monitoring Graphical User
Interface (GUI) so that operator can observe the SLA status and

QoS estimates.

In the next section we describe how SLAs are calculated
using a service modeling approach and subsequently we
describe how QoS values are estimated using N-KPIs based on
the Data-Mining approach.

Assumptions and Limitations. When estimating QoS values
of IPTV service, our solution can only estimate QoS values for
impairments that are caused by network level problems but not
errors caused at encoding stage for example audio/video
synchronization errors. In addition, there would be a certain
overhead to collect N-KPI values. Another limitation is that if
certain system settings are changed, for example the protocol
used for IPTV (from RTP to some other protocol), the Data
Mining Engine needs to build the data model again.

III. SERVICE MODELLING FOR SLA CALCULATION

In general, a service model is a formal high level

specification of a service, the relations between a service and
the resources (network and other) on which the service is built

and the way in which the service is made available to the users
of that service [5]. A form of service model, known as service
topology, represents dependencies between resources and

services. In addition, these service models include (1) higher

level service QoS which represents how a higher level service

(e.g., IPTV) perform (2) lower level network/resource KPIs
which indicate how a lower level network service (e.g. IP
delivery service) performs (3) service levels (service goals and
objectives) (4) Service Level Agreements (SLAs) and (5)

relationships between network resources, KPIs, end-user
service, QoS, users and SLAs. This form of service modeling

captures the basic details of the technical implementation of a
service and the requirements of that service in terms of
resources.

We use these service models to monitor and analyse the

quality of a service, its overall performance, and to calculate
SLAs based on the modeling framework that is described later

in this chapter. SLAs can be calculated for:
- End-user Services: for operators it is important to monitor
the performance of delivered service to individual users as well
as determining the overall service delivery quality averaged
over all users. In the Magneto solution SLAs for the overall
IPTV service are calculated and monitored using service
modeling and a modeling engine (the SALmon engine,
described below).

- Network Services: in addition to the end-user service QoS,
the modeling engine can also calculate the SLAs for networks,
(e.g., for IP links). This is useful when monitoring of a
particular network segments is required (e.g., access network)
to determine if that network segment is performing as expected.

A. Service Modeling Framework

We express the service model in the SALmon

environment [11], which is a tailor-made language for
expressing service models. SALmon combines object-oriented

structuring for service model decomposition and functional

expressions for status calculations. Due to the nature of service
modelling, the programming language must have the
capability to treat time as part of the normal syntax: all

variables are seen as arrays indexed by a time stamp. It is

possible to use the time-index syntax to retrospectively change

the value of variables. This is important in many scenarios, for
example late arrival of probe data. This enables SALmon to
recalculate SLA status whenever KPIs are reported.

List comprehension and an extensive set of built-in

functions provide the power needed to express complex

models. The language has two fundamental layers: the
Definition Layer and the instantiation Layer. The definition

layer defines the classes and calculations in the model. Core
concepts that we want to represent as classes are Services,

Service Levels and SLAs. Classes have inputs, anchors,

attributes and properties. The instantiation layer creates

instances of the service classes, assigns properties and
establishes connections between instances through anchors.

Our model is based on a number of layers that include:

1. Service Layer: The layer exposed to the user, where

Quality of Service (QoS) is measured.
2. Transport Layer: where network impairments such as

loss, delay, and jitter may occur.

Figure 2 illustrates the classes in our IPTV model. We

have two major classes in the Service Layer:

IPTVUserService and IPTVProviderService. The

IPTVUserService represents the status and QoS for an

individual end- user and the IPTVProviderService

aggregates user services into an overall IPTV service quality

from a virtual provider perspective. The IPTVUserService

depends on the application and network components:

RTSPSession, (Realtime Streaming Protocol [2]), and

I PConnect i vi ty. Service levels verify that each service

performs within configured thresholds. SLAs finally represent

the agreement regarding provided service levels between the

provider and the user.

USER

Transport Layer
Applications, Networks, Devices Services Service Levels

Figure 2: Service Model

The QoS reports with end-user service performance
metrics (more specifically IPTV service KPIs) are sent to the

modelling engine using the SOAP protocol. In other words,

212

terminal QoS reports are fed into the modelling engine to

calculate the status of end-user SLAs. Due to the time
awareness of the SALmon engine it is capable of recalculating

SLA status whenever reports arrive. More comprehensive
details about our IPTV service modelling approach are

described in [12]. Since it is not always feasible to get terminal
reports with QoS status, we use data mining techniques to

estimate the QoS values for users whose devices cannot send
terminal reports. These estimates are then sent into the

modeling engine to calculate the SLAs of end-user services.

The next chapter describes how these estimates are performed
using data mining techniques.

Similar to QoS reports, N-KPIs are fed into the modeling

engine by the N-KPI probes in a manner similar to that

described for QoS reports.

IV. QoS ESTIMATION THROUGH DATA MINING

Our system uses Data Mining (DM) techniques to

automatically learn and apply the functional relationship

between N-KPIs and QoS values. In the learning phase, the
system monitors N-KPI values for cases where the QoS values
are known and learns the functional relationship between those

N-KPI and QoS values. Once the functional relationship is

learnt, it can be applied to estimate QoS values from N-KPIs
in cases where the QoS values are not known.

Meta-learning to
optimise SVR

parameters

SVR to learn
data model

SVR to predict
the label

Learning phase

Testing phase

Figure 3 Learning and testing phases of the DM predictive

task.

Our system uses DM methods for "predictive task" (based

on the data-mining terminology). That is, forecasting 2 the
values of QoS values based on the values of N-KPI

measurements. A predictive process is composed of two

phases; learning and testing phase (see Figure 3). During the
learning phase the system is automatically trained using a

learning algorithm. We are using a supervised learning method

i.e. the system is provided with data examples, each composed
of several attributes and a label which we aim to predict in the

testing phase. The output of the learning phase is a so-called

data model which specifies dependencies between values of
attributes and corresponding ranges of the label. In our system

2 We are also using the term "predicting" according to the DM

terminology interchangeably with "estimating" in this paper.

attributes are N-KPI values and the label corresponds to QoS
values with both, N-KPIs and QoS values being numeric.
There are numerous DM algorithms to estimate relationship

between quantitative attributes and numeric label [6] e.g.

polynomial fitting, linear regression, NaIve Bayes.

In our experiments we use a Support Vector Regression

(SVR) method which has many desirable qualities that make it

one of the most widely used regression algorithms [6]. The
SVR algorithm takes as an input a number of training samples,

each characterized by a number of attributes (N-KPIs) and

labels (QoS values).

It produces a function (i.e. a data model) which only

depends on a subset of the training data, because the cost

function for building the model ignores any training data that

is close (within a predefined threshold) to the model

prediction. More details about SVR can be found in [7].

As explained earlier, there are several parameters that

influence performance of the SVR algorithm applied to a

specific data set. Moreover SVR can use different kernel
functions for computation of non-linear data models. These

parameters can be tuned in the first part of learning phase

using a so-called meta-learning algorithm applied to the

training samples. We use a cross-validation for meta-learning

[6]. With this method each record of the training set is used the

same number of times for building a preliminary data model
and estimating its performance. For example, we use a 3-fold

cross-validation method in which training samples are

segmented into 3 equal-sized partitions. The method then

builds a model of the data 3 times and tests its performance.

During each of 3 runs, one of the partitions is chosen for

testing the performance while the rest of them are used for
training the model. This procedure is repeated 3 times so that

each partition is used for testing exactly once. The method

uses a root mean square metric to estimate the performance of

each round i.e. it compares root mean square of the distance

between measured QoS value of samples from the testing
partitions and their corresponding predicted value.

The cross-validation method outputs the expected

performance of the data model built using SVR algorithm with

specific values assigned to its parameters. Therefore, we run

the cross-validation method with different configurations of

the SVR algorithm and we estimate the optimal configuration
to be used during the learning phase to build the data model of

the training set. In the final stage of the learning phase, the

system uses the SVR algorithm with the optimized parameters

and builds the defmitive data model which will be applied in

the testing phase.

During the testing phase, the system is only provided with
attributes (N-KPIs in our scenario) and it applies the

previously build data model to predict label values (QoS). We

expect that the data provided for the testing phase follows the

previously build data model and therefore the predicted QoS

value corresponds to the real value.
The DM algorithms are applied as a part of the Knowledge

Discovery Process (KDP) composed of Data pre-processing,

DM algorithm and Data post-processing components.

Therefore, each instance of the DM algorithm (i.e. meta-

213

learning, learning and testing phases) is preceded by the pre

processing and followed by a post-processing step.
The aim of the pre-processing step is to prepare the input

raw data for the DM algorithm. Collected QoS values and N

KPI samples need to be time correlated and their ranges and

types must be defmed. Also, N-KPIs which do not have an

impact on QoS are excluded from the input to the DM

algorithm. Moreover, the system needs to have a so-called
label which is an attribute that will be predicted with the DM

algorithm: the QoS attribute in our case. More details about

our implemented pre-processing stage are described in Section

V.

The post-processing step ensures that only valid and useful

results of the DM algorithm are preserved for further analysis.

Therefore for meta-learning the optimal parameters of the

SVR algorithm are stored in a format that can be easily used in

the learning phase. The post-processing step of the learning

phase transforms the data model into the format that can be

applied during the testing phase. Finally, the post-processing
step which follows the testing phase consists mainly of

presentation of the results to the analyst using different

visualization formats.

V. PROTOTYPE SETUP AND RESULTS

A. The Test-bed

To evaluate our solution we built a test-bed that can stream
IPTV content over RTSP and also built other components in

our solution. This test-bed setup is shown in Figure 4. In our

set-up we have SALmon engine with IPTV service model

(described in Section III) running in one computer and the

Rapid Miner with developed data mining processes running in

another computer. A MySql database is used to store collected
QoS values and N-KPIs. A streaming server that can stream

over RTSP protocol is also used. These components are

attached to an Ethernet switch as depicted in Figure 4. In

addition to the above components, a Linux server with

multiple Ethernet cards is used as a network emulator with
IPTables [14] and Netem [15] tools installed to emulate a

network link. These tools can introduce network impairments

such as packet loss, jitter, delay etc. In our experiments we

used these tools to introduce network impairments so that

there will be various changes in N-KPIs. The test-bed also

contains an emulated home gateway and a laptop running VLC
client that is extended (described later in this section) such a

way so that it can send QoS values to the database. The N-KPI

probe (described later in the chapter) observes the IPTV traffic

and sends N-KPIs to the database. In our experiment, we

introduce network impairments such as packet loss when the

IPTV content is streamed to the laptop. The extended VLC
client and adaptor send the detected QoS values for different

packet loss levels and at the same time the network probe

sends the detected N-KPIs values. Using these data, initially,

the data-mining engine builds the data model (the relationship

between QoS values and N-KPIs). Once this initial phase is
over we change the packet loss arbitrarily and estimates the

QoS values based on N-KPIs.

SALmon Engine

with IPTV Service

Model (Modeling
Engine)

RTSP

Server

Netem tool

MySql

Database

Figure 4 Testbed architecture

Rapid Miner with

data mining

processes (Data
Mining Engine)

N-KPI

B. QoS Value Collection from Terminals

We developed a Magneto event processing module (based
on open source Complex Event Processing engine ESPER

[16]) on top ofOSGI to process different events at the HG. The

processing module can be easily deployed on any type of HG

capable of running OSGI framework. Moreover, thanks to its

modular architecture it can be easily expanded and adapted to

various HAN architectures. The processing engine consists of
several OSGI bundles realizing different objectives. The VLC

adapter bundle handles log messages from VLC client and

sends them to the Event Processing bundle which processes

them according to the predefined rules. The result of this

processing is sent to the Modeling adapter bundle and Data

Mining adapter. The Modeling adapter bundle feeds the
Modeling Engine with the QoS measurements whereas Data

Mining adapter sends QoS measurements to the Data Mining

Engine for further analysis.

C. N-KPI Collection ofIPTV Traffic

The N-KPI probe is built using wrapper application on
TShark [17]. The wrapper application is built using Java with

an interface to native code. The probe is then configured in

such a way it monitors IPTV traffic (which is based on RTSP

which in turn use RTP) for a configurable period. During this

period, the probe collects data related to IPTV /RTSP /RTP

traffic [18]. More precisely, it monitors the packet loss, max
jitter, mean jitter and max delta [18] that is available from

TShark tool. In parallel with monitoring thread, at the end of

each period, the collected data is analysed in a different

concurrent thread, to find the N-KPI values. Once the analysis

is fmished, the calculated N-KPIs values are sent to the
database together with the timestamp. While this thread

analyses the collected data, the initial thread continues to

monitor the IPTV traffic collecting data for the next period.

D. QoS Value Estimation using Rapid Miner

Data Mining Engine (DME) is based on Rapid Miner [8]
which allows an easy composition of the full chain for the
KDP. We implemented two phases of the predictive process to
forecast QoS values on the basis of N-KPI measurements.
DME receives QoS and N-KPI values from different sources

214

and in the pre-processing task prepares them for the DM
algorithm. In our experiments we used QoS choppiness
(QoS _ C) events from VLC but our technique is not tight to this
particular QoS values. QoS _ C values are measured every 2
seconds at the VLC client and later processed by the Magneto
event processing module along with their corresponding
timestamp, service ID and user ID. QoS _ C values correspond
to the number of choppiness events which were reported by the
VLC client. N-KPI values are measured over 20 seconds period
and they are received in N-KPI reports which consist of several
N-KPI measurements (packet loss, packet mean jitter, packet
max jitter and packet max delta) with corresponding
timestamp. The pre-processing task outputs a single table
composed of numerous records having as attributes QoS _ C
values and N-KPI measurements as shown in Figure 5. Time
attribute corresponds to the timestamp of every N-KPI report.
QoS _ C represents the number of choppiness events reported by
VLC between two consecutive N-KPI reports (i.e. during the
time when the corresponding packet loss, packet mean jitter,
packet max jitter and packet max delta were estimated).

ITIME I PKT_LOSS I JITTER I MAX_JITTER I MAX_DELTA I QoS_C I

Figure 5 Output of Pre-processing task
To build the relationship between QoS_C label and N-KPI

attributes, we need to select the N-KPI attributes which have
impact on the value of QoS _ C. We do that on the basis of the
correlation matrix build with DME and presented in Figure 6.
We can see that QoS _ C label is highly correlated with Packet
Loss and Mean Jitter N-KPIs. Therefore we only use these N
KPIs for the DM predictive task.

Attributes Packet Loss Mean Jitter Max Jitter Max Delta QoS C
Packet Loss 1 0.771 0.155 0.004 0.862
Mean Jitter

-

0.771 -.,
-

0-461 0.078 0.752
Max Jitter 0_155 0-461 1 0_039 0_115
Max Delta 0_004 0_078 0_039 1 0_003
�C 0_862 0.752 0_115 0_003 1

Figure 6 Correlation Matrix of N-KPI and QoS _ C attributs

To perform learning phase of DM process we collect N-KPI

and QoS _ C measurements of an IPTV session lasting for 45

minutes. We emulate variation of the N-KPI values using

Netem tool installed in the emulated network which allows us
to introduce packet loss into the streaming session. We vary

packet loss across different values between 0% and 4% and

measure the actual packet loss at the laptop with VLC client.

The presence of packet loss causes also variation of other N

KPIs. Above 4% packet loss, the video stream is impossible to

follow by a viewer.
First we tune the DM algorithm for the learning phase using

cross-validation meta-learning process. We run several rounds

of cross-validation method changing kernel functions of the

SVR algorithm and their parameters at every round. We

compared performance of the DM algorithm expressed as the

Root Mean Square Error (RMSE) of the QoS _ C value
estimated at each round with specific kernel function and its

parameters. As a result we selected Dot Product kernel function

with its parameter C=17.267 because it had the lowest RMSE

equal to 34.788.

500 0.04

Packet Loss Ratio -
450 Predicted QoS_C -:- .

.
.. 0.035

Measured QoS_C --�E--
400

�,
0.03

0 350
a

r u 0.025
� 300
'5
�

a. 250 0.02

�
u 200

I
0.015

150
'" 0.01

100

50· 0.005

500 1000 1500 2000 2500 3000 3500

Time[s]

Figure 7 Measured Packet Loss Ratio and measured QoS_C

values and predicted QoS _ C values during the I hour video

stream.

To finalize the learning phase, we assigned the optimal
kernel function and its parameters to the SVR algorithm to

learn the model of the relationship between QoS_C and N-KPI

values (Packet Loss and Mean Jitter). The obtained data model

was applied to a new IPTV stream during the testing phase.

Due to space limitation we do not show details and assessment

of the learning phase (e.g., amount of data, time, processing

requirement)

Time [5)
Figure 8 Measured Mean Jitter and measured QoS _ C

values and predicted QoS _ C values during the I h video stream.

We monitored N-KPI values during a I hour of IPTV

streaming and we sent them to the DM Engine for the

processing during testing phase. We predicted QoS _ C labels on
the basis of previously built data model and collected N-KPI

values, using SVR with predefmed parameters. The evolution

of measured Packet Loss Ratio and QoS _ C values during the

played IPTV stream is depicted in Figure 7. The figure also

shows measured QoS _ C values that we monitored in order to

compare them with the forecast. We can see that predicted and
measured QoS _ C values are close. Figure 8 depicts the

variation of measured QoS _ C and Mean Jitter values during the

same IPTV stream.

215

The correlation between Mean Jitter and measured QoS _ C

is visible but not as much pronounced as for Packet Loss Ratio
and measured QoS _ C quantities. In this test scenario we did

not control the variation of the Mean Jitter value and its

change was due to the variation of Packet Loss Ratio enabled

by Netem tool. As a future work we plan to emulate Mean

Jitter in a more controllable manner (by setting it with Netem

tool) and we will evaluate its impact on the QoS C.
500

450

0 400
",'

£ 350

� 300 Jj
� 250

.�
200 0

'0

E 150

�
z 100

50

0
Average measured value --+- 0

Measured value 0
Predicted value lIE

IICIIC�

0.005 0.01 0.015 0.02 0.025 0.Q3 0.035 0.04

Packet Loss Ratio

Figure 9 Measured and predicted values of QoS _ C against

Packet Loss Ratio.
The correlation between Packet Loss Ratio and QoS _ C

values measured during the I hour IPTV stream is shown in
Figure 9. It shows also the forecasted QoS_C values. The
prediction is very accurate, especially for the values of packet
loss ratio below 0,02. For the larger values of packet loss, the
variance of measured QoS _ C values measured for the same
value of packet loss ratio increases significantly and therefore it
is much more difficult to forecast QoS _ C. The RMSE of the
forecast during the testing phase is 42.42. We can also see that
the DM Engine predicts several values of QoS _ C for the same
Packet Loss Ratio. This is because data model depends on two
parameters, Packet Loss Ratio and mean jitter, and the latter
parameter has the impact, although less significant than Packet
Loss Ratio, on the forecast of QoS _ C.

100 .1++++++++++++++\
::5
(J) 80 1J
c
CO
'" :;

.� 60

SLA status --+--
Latency ---)(--

Loss .. -"*
Jitter 0

Delay_ ... __
VLC client choppiness. - - 0 -.

o����----������L-����U--t� o 50 100 150 300
Time

Figure 10 SLA and inputs. The top line in the above figure

denotes the SLA status which goes from OK to jeopardized at

the arrow.

E. SLA Calculation using Modeling Engine

The SLA engine is able to calculate overall SLA status for
individual users as well as aggregated services. This gives a
view on the Quality of Experience based on the service model

which takes various KPIs into account in combination with the

service and network topology. An example is shown in Figure

lO. The other lines illustrate the myriad of inputs (KPIs) such
as loss, jitter and delay. We have normalized the KPI values in
order to illustrate different values in same plot. In this specific

scenario the major impact comes from increasing loss which

makes the SLA status decrease.

VI. RELATED WORK

Network performance measurement has a long tradition
and is commonly used for network management and

monitoring. In the era of numerous services being deployed in
a network (VoIP, IPTV, MMTel) ISPs and operators are

putting more effort to monitor service performance. Several

publications describe possibility of monitoring service
performance on the basis of measurements obtained from
network elements.

Furuya at al. [10] investigated relationship between IP

network performances and voice quality for VoIP service. The

authors discovered high correlation between each of the IP

network performances and the corresponding voice quality.

They suggest the possibility managing the quality of service of
V oIP by monitoring the corresponding network performances.

Racz et al. [9] describes architecture for network and

service quality measurement. The architecture can determine

general network properties (e.g., packet delay, packet loss) as
well as the characteristics of a service (single VoIP session

performance). The authors do not describe how these values
are linked and how service parameters could be deduced from

the network measurements.
Terminal reports are proposed and sometimes used in a

number of contexts such as in Set-top-Boxes [19] and with

RTSP client reports (i.e., RTCP [20]). However the use of
terminal reports in those contexts is different from our overall

solution. Network performance measurements have been

researched a lot [13]. In our overall solution we used the

information from terminal reports and probes.

VII. CONCLUSION

In this paper we presented a new method of quality
monitoring of end-user services that combines a number of
techniques in a novel way. The proposed solution aims to
overcome problems which relate to the complexity of the
environment where end-user services are provided.

Described system uses a service modeling approach which
represents relationships between entities important for
monitoring of service quality. It includes information about
network resources delivering the service, their N-KPI values,
QoS values and status of SLAs. QoS values are fed into a
service modeling engine and to a data-mining engine from a
small sample set of "smarter" end-user terminals. Similarly, the
N-KPIs are collected from the network and fed into the same

216

modeling and data-mining engine. The data-mining engine
automatically builds a data model representing the relationship
between the QoS values and N-KPIs. Subsequently, the data
mining engine estimates the QoS values for terminals where
QoS terminal reports are not available and these estimates are
fed into the modeling engine to calculate SLAs.

The proposed system was implemented and tested using an
IPTV service. Our experimental results show that the described
approach can be used to monitor quality of service in a real
environment by effectively estimating the QoS values and
calculating the SLA status. Our solution is not bound to the
IPTV service and in the future we plan to use the system for
monitoring of other type of services in even more
heterogeneous environments.

ACKNOWLEDGMENT

This paper describes work undertaken in the context of the CELTIC

MAGNETO project, which is partially funded by "Enterprise Ireland" as
part of the International Collaboration Support Programme and by the
Austrian FFG. The authors are very grateful for Liam Fallon, Anne-Marie

Bosneag, Magneto consortium members and anonymous reviewers for
their comments and support for this work.

REFERENCES

[I] Magneto Project: http://projects.celtic-initiative.orglmagnetolindex.html

[2] Real Time Streaming Protocol (RTSP) http://tools.ietf.orglhtmllrfc2326

[3] 1. Kielthy, K. Quinn, R. Toribio, P. Arozarena, S. Handurukande, M.
Garcia Mateos, M. Zach; Design of a HAN Autonomic Control Loop
IEEE MACE 2010 Workshop

[4] VLC http://www.videolan.orglvlc/

[5] Raisanen, V., Service Modeling, Wileyy, ISBN 9780470018071, 2006

[6] Tan, P.-N.; Steinbach, M.; Kumar, V. introduction to Data Mining;
Addison Wesley: led.; 2005.

[7] V. Vapnik, S. Golowich "Support Vector Method for Function
Approximation, Regression Estimation, and Signal Processing", Neural
information Processing Systems, Vol. 9. MIT Press, Cambridge, MA.

[8] Rapid -I. Rapid Miner Community Edition. http://rapid-i.com

[9] P. Racz, D. Donni, B. Stiller; "An architecture and implementation for IP
Network and Service Quality Measurements," Network Operations and
Management Symposium (NOMS), 2010, pp.24-31, April 2010

[10] Furuya, H.; Nomoto, S.; Yamada, H.; "Experimental investigation of the
relationship between TP network performances and speech quality of
VoTP," Telecommunications, 10th IntI. Conference on, 2003

[II] S. Wallin, V. Leijon, and J. Ehnmark, "SALmon - A Service Mod- eling
Language and Monitoring Engine," in Proceedings of the IEEE IntI.
Symposium on Service-Oriented System Engineering December 2008

[12] Handurukande, S. and Wallin, S. and Jonsson, A, "IPTV service
modeling in Magneto networks", Network Operations and Management
Symposium Workshops (NOMS Wksps), 2010 IEEE/IFIP}, pp.51-54

[13] Bohoris, C. Pavlou, G. Cruickshank, H. Using mobile agents for
network performance management. IEEE/IFlP NOMS 2000.

[14] IPTables www.netfilter.orgl

[15] Netem
www.linuxfoundation.orglcollaborate/workgroups/networkinglnetem

[16] Epser http://esper.codehaus.org

[17] TShark http://www.wireshark.orgldocs/man-pages/tshark.html

[18] RIP http://www.ietf.orglrfc/rfc3550.txt

[19] Data Model for a TR-069 Enabled STB http://www.broadband
forum.orgitechnical/downloadITR-135.pdf

[20] RIP Control Protocol Extended Reports (RTCP XR) http://www.rfc
editor.orglrfc/rfc3611.txt

